Date today(); // правильно, необходимость
void clearAppointments(Date d); // в определении Date отсутствует
Конечно, передача по значению – не очень хорошая идея (см. правило 20), но если по той или иной причине вы будете вынуждены ею воспользоваться, это никак не оправдает введения ненужных зависимостей. Не исключено, что возможность объявить функции today и clearAppoinments без определения Date повергла вас в удивление, но на самом деле это не так уж странно. Определение Date должно быть доступно в момент вызова этих функций. Да, я знаю, о чем вы думаете: зачем объявлять функции, которых никто не вызывает? Ответ прост. Дело не в том, что
• Размещайте объявления и определения в разных заголовочных файлах. Чтобы было проще придерживаться описанных выше принципов, файлы заголовков должны поставляться парами: один – для объявлений, второй – для определений. Конечно, нужно, чтобы эти файлы были согласованы. Если объявление изменяется в одном месте, то нужно изменить его и во втором. В результате пользователи библиотеки всегда должны включать файл объявлений, а не писать самостоятельно опережающие объявления, тогда как авторы библиотек должны поставлять оба заголовочных файла.
Например, если пользователь класса Date захочет объявить функции today и clearAppointments, ему не следует вручную включать опережающее объявление класса Date, как было показано выше. Вместо этого он должен включить директивой #include соответствующий файл с объявлениями:
#include “datefwd.h” // заголочный файл, в котором объявлен
// (но не определен) класс Date
Date today(); // как раньше
void clearAppointments(Date d);
Файл с объявлениями назван «datefwd.h» по аналогии с заголовочным файлом <iosfwd> из стандартной библиотеки C++ (см. правило 54). <iosfwd> содержит объявления компонентов iostream, определения которых находятся в нескольких разных заголовках, включая <sstream>, <streambuf>, <fstream> и <iostream>.
Пример <iosfwd> поучителен еще и по другой причине. Из него следует, что совет этого правила относится в равной мере к шаблонным и обычным классам. Хотя в правиле 30 объяснено, что во многих средах разработки программ определения шаблонов обычно находятся в заголовочных файлах, но в некоторых продуктах допускается размещение определений шаблонов и в других местах, поэтому все же имеет смысл предоставить заголовочные файлы, содержащие только объявления, и для шаблонов. <iosfwd> – как раз пример такого файла.
В C++ есть также ключевое слово export, позволяющее отделить объявления шаблонов от их определений. К сожалению, поддержка компиляторами этой возможности ограничена, а практический опыт его применения совсем невелик. Сейчас еще слишком рано говорить, какую роль будет играть слово export в эффективном программировании на C++. Классы, подобные Person, в которых используется идиома pimpl, часто называют
#include “Person.h” // поскольку мы реализуем класс Person,
// то должны включить его определение
#include “PersonImpl.h” // мы должны также включить определение класса
// PersonImpl, иначе не сможем вызывать его
// функции-члены; отметим, что PersonImpl имеет
// в точности те же функции-члены, что и
// Person: их интерфейсы идентичны
Person::Person(const std::string& name, const Date& birthday,
const Address& addr)
: pImpl(new Person(name, birthday, addr))
{}
std::string Person::name() const
{
return pImpl->name();
}
Обратите внимание на то, как конструктор Person вызывает конструктор Personlmpl (используя new – см. правило 16), и как Person::name вызывает PersonImpl::name. Это важный момент. Превращение Person в класс-дескриптор не меняет его поведения – изменяется только место, в котором это поведение реализовано.
Альтернативой подходу с использованием класса-дескриптора – сделать Person абстрактным базовым классом специального вида, называемым
Интерфейсные классы сродни интерфейсам Java и. NET, но C++ не накладывают на интерфейсные классы тех ограничений, которые присущи этим языкам. Например, ни Java, ни. NET не допускают в интерфейсах наличия членов-данных и реализаций функций-членов. C++ этого не запрещает. Большая гибкость C++ в этом отношении может оказаться кстати. Как объясняется в правиле 36, реализация невиртуальных функций должна быть одинаковой для всех классов в иерархии, поэтому имеет смысл реализовать такие функции, как часть интерфейсного класса, в котором они объявлены.
Интерфейсный класс Person может выглядеть примерно так:
class Person {
public:
virtual ~Person();
virtual std::string name() const = 0;
virtual std::string birthDate() const = 0;
virtual std::string address() const = 0;
...
};
Пользователи этого класса должны программировать в терминах указателей и ссылок на Person, потому что невозможно создать экземпляр класса, содержащего чисто виртуальные функции (однако можно создавать экземпляры классов, производных от Person – см. далее). Пользователям интерфейсных классов, как и пользователям классов-дескрипторов, нет нужды проводить перекомпиляцию до тех пор, пока не изменяется интерфейс.
Конечно, пользователи интерфейсных классов должны иметь способ создавать новые объекты. Обычно они делают это, вызывая функцию, играющую роль конструктора для производных классов, экземпляры которых необходимо создать. Такие функции часто называют функциями-фабриками (см. правило 13), или
class Person {
public:
...