В одном таком случае был замешан молодой предприниматель Кевин Лоуренс — он умудрился собрать 91 млн долларов на создание сети клубов здоровья, оборудованных по последнему слову техники{83}. Набив карманы наличными, Лоуренс развил бурную деятельность, нанял тучу исполнительных директоров и спустил деньги инвесторов так же быстро, как и собрал. И все бы ничего, за исключением одного: Лоуренс со своей когортой большую часть денег тратили не на развитие дела, а на личные нужды. А так как приобретение нескольких домов, двадцати личных яхт, сорока семи автомобилей (в числе которых пять «хаммеров», четыре «феррари», три спортивных «доджа», два шикарных «форда» и «ламборгини дьябло»), двух часов «Ролекс», браслета с бриллиантами в 21 карат, самурайского меча за 200 тыс. долларов и машины для коммерческого производства сладкой ваты едва ли можно было списать как деловые расходы, Лоуренс с дружками попытались увести деньги путем перечисления их по сложной банковской схеме со счета на счет как средства то одной подставной компании, то другой — все с целью создания видимости активно расширяющегося бизнеса. На их несчастье, заподозривший неладное бухгалтер-криминалист Даррелл Доррелл составил список из более чем 70 тыс. номеров (счета и переводы) и, опираясь на закон Бенфорда, сравнил, как распределяются цифры. А распределялись они вразрез с законом{84}. Это, конечно же, было только началом расследования, однако дальше история развивалась по известному сценарию, а развязка наступила за день до Дня благодарения 2003 г., когда Кевин Лоуренс, окруженный своими адвокатами и облаченный в светло-голубую тюремную робу, был приговорен к двадцати годам заключения без права досрочного освобождения. Налоговое управление США также изучило закон Бенфорда как способ обнаружения случаев налогового мошенничества. Один исследователь даже применил закон к данным налоговых поступлений от Билла Клинтона за тринадцать лет. Цифры распределились в соответствии с законом{85}.

По-видимому, ни нью-йоркские гангстеры, ни те, кто покупал их лотерейные билеты, не замечали в номерах этих самых билетов закономерностей. Но вздумай люди вроде Ньюкомба, Бенфорда или Хилла сыграть в эту лотерею, они могли бы воспользоваться законом Бенфорда и заключить выгодные пари — неплохая прибавка к зарплате ученого.

В 1947 г. ученым из «Рэнд Корпорейшн» понадобилась большая таблица случайных цифр для цели куда как более достойной: найти приблизительные решения определенных математических уравнений с применением способа, метко названного «методом Монте-Карло». Чтобы получить эти цифры, они решили прибегнуть к электронному порождению помех. Но можно ли назвать электронные помехи случайными? Вопрос не менее коварный, чем определение самой случайности.

В 1896 г. американский философ Чарльз Сандерс Пирс писал о том, что «правила и методики, по которым делается случайная выборка, должны быть таковы, чтобы при бесконечном повторении экспериментов в конечном итоге вероятность того или иного результата была равнозначна остальным вариантам при таком же количестве повторений»{86}. Это что касается статистического определения вероятности. Альтернативой ему служит субъективное толкование вероятности. При статистическом определении вероятности суждение выносится исходя из того, чем закончилась серия экспериментов, а при субъективном толковании — исходя из того, каким образом эта серия осуществляется. Согласно субъективному толкованию вероятности, число или ряд чисел считаются случайными, если мы не знаем или не можем предсказать ход процесса, в результате которого они появляются.

Разница между двумя определениями гораздо глубже, чем может показаться на первый взгляд. Например, в идеальном мире бросок игральной кости будет случайным по первому определению, но не по второму: вероятности выпадения любой стороны кости равны, но в идеальном мире мы можем воспользоваться точными данными о физических условиях и законах физики, чтобы определить перед каждым броском то, как именно выпадет кость. В полном несовершенства реальном мире бросок кости является случайным по второму определению, не по первому. Объясняется это тем, что, как указал Моше, из-за несовершенства мира кость не выпадет любой из сторон с равной частотностью. Мы же, в силу нашей ограниченности, не имеем предварительных данных о том, какая из сторон кости перед какой имеет преимущество.

Чтобы определить, является ли составленная ими таблица случайной, ученые из «Рэнд Корпорейшн» подвергли ее серии испытаний. При близком рассмотрении оказалось, что в их системе имеются искажения, прямо как у изначально неидеальной игральной кости Моше{87}. Ученые скорректировали таблицу, однако совсем избежать закономерностей так и не смогли. Как сказал Моше, совершенный хаос — это, по иронии судьбы, некое совершенство. И все же числа получились в достаточной степени случайными, чтобы оказаться полезными, и в 1955 г. компания опубликовала их под броским заголовком: «Миллион случайных цифр».

Во время своих изысканий ученые из «Рэнд Корпорейшн» столкнулись с проблемой рулеточного колеса, которая была обнаружена, если говорить абстрактно, почти столетие назад одним англичанином по имени Джозеф Джаггер{88}. Джаггер был инженером-механиком на текстильной фабрике в Йоркшире, так что обладал интуитивным чутьем в отношении всего, что касалось достоинств, а также недостатков оборудования. Однажды в 1873 г. этот инженер с развитой интуицией и изобретательным умом вместо текстиля задумался о деньгах. И задался вопросом: насколько совершенна работа рулеточных колес в казино Монте-Карло?

Колесо рулетки, изобретенное, как гласит легенда, Блезом Паскалем, в то время как он подумывал о создании вечного двигателя, представляет собой большую чашу с ячейками, которые по виду напоминают тонкие куски пирога. Когда колесо вращают, мраморный шарик прыгает вдоль обода чаши и в конце концов остается в одной из ячеек, которые пронумерованы от 1 до 36 и еще добавлен 0 (а также 00 в американской рулетке). Задача игрока проста — угадать, в какую из ячеек упадет в конечном итоге шарик. Существование колеса рулетки является достаточно ярким свидетельством тому, что настоящих экстрасенсов не существует. Ведь если в Монте-Карло вы ставите 1 доллар и угадываете номер ячейки, казино выплачивает вам 35 долларов (и кроме того возвращает вам 1 доллар). Если бы экстрасенсы существовали, вы бы запросто встретили их в подобных заведениях: они бы выходили оттуда, напевая и пританцовывая, и катили перед собой тележку с наличными, а не заводили бы в Интернете сайты, называя себя «Зельдой Всевидящей и Всезнающей», и не предлагали бы круглосуточные консультации в вопросах любви, конкурируя с 1,2 млн других сетевых экстрасенсов (если верить Гуглу). Мне будущее и в особенности прошлое представляется затянутым густым туманом. Однако я знаю одно: вздумай я сыграть в европейскую рулетку, мои шансы проиграть равны 36 из 37, а шансы выиграть — 1 из 37. Это значит, что с каждого 1 доллара, поставленного мной, казино получит (36/37 х 1 доллар) — (1/37 х 35 долларов). То есть, 1/37 доллара или же около 2,7 центов. В зависимости от состояния моего ума это можно назвать либо ценой за удовольствие лицезреть, как маленький мраморный шарик подскакивает на вращающемся блестящем колесе, либо ценой за вероятное озарение. По крайней мере, так оно должно быть.

Но вот так ли оно на самом деле? Только в том случае, если рулеточное колесо точнейшим образом уравновешено, подумал Джаггер. А уж он имел дело со столькими механизмами, что разделял точку зрения Моше. И готов был поспорить: колесо уравновешено вовсе не идеально. Так что он взял свои сбережения, поехал в Монте-Карло и нанял шесть помощников: по одному на каждое из шести рулеточных колес казино. Каждый день помощники наблюдали за колесами и в течение двенадцати часов — часы работы казино — записывали каждое число, которое выпадало. Каждый вечер Джаггер у себя в гостиничном номере анализировал данные. По прошествии шести дней он не обнаружил никаких отклонений у пяти рулеточных колес, зато у шестого девять чисел выпадали заметно чаще остальных. Таким образом, на седьмой день Джаггер пошел в казино и начал ставить на девять выигрышных номеров: 7, 8, 9, 17, 18, 22, 28, 29.

В тот вечер ко времени закрытия казино у Джаггера накопилось 70 тыс. долларов. Его выигрыши не остались незамеченными. Вокруг стола собрались другие игроки — делать ставки в надежде приобщиться к удаче, работники казино следили за Джаггером в оба, пытаясь разгадать его систему, а то и поймать на мошенничестве. К четвертому дню Джаггер выиграл уже 300 тыс. долларов, а управляющие казино отчаянно искали способ избавиться от таинственного игрока или хотя бы помешать ему. Тут кто-нибудь сразу представит себе дюжего парня из Бруклина. Но управляющие придумали кое-что получше.

На пятый день Джаггер начал проигрывать. Проигрыши, как и выигрыши, нельзя было заметить сразу. И до пятого дня, и после Джаггер когда выигрывал, когда проигрывал, однако теперь он проигрывал чаще, чем выигрывал, хотя раньше все было наоборот. При небольшой прибыли казино на то, чтобы

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату