xlink:href='#Autogen_eBook_id104'/>

откуда

Скорость v2 после второго толчка можно считать равной 2v1, т. е. , а после k- го толчка

откуда

Подставив это выражение для к в формулу

получаем

Преобразуем последнее выражение:

потому что

Выражение:

при бесконечно большом п (т. е. при переходе от толчков к непрерывному вытеканию газа) равно, как известно, 1/e где е = 2,718. Тогда преобразуемое выражение получает вид:

откуда получаем уравнение ракеты:

Укажем теперь более строгий вывод того же основного уравнения. Обозначим массу ракеты в некоторый момент через М и предположим, что до горения ракета была неподвижна. Вследствие горения ракета отбрасывает бесконечно малую часть dM своей массы с постоянною скоростью с (по отношению к ракете). При этом остальная часть массы ракеты (М– dM) получает некоторую бесконечно малую прибавку скорости dv. Сумма количества движения обеих частей ракеты должна быть, по законам механики (см. выше), та же, что и до горения, т. е. должна равняться нулю:

cdM + (М– dM)dv = О,

или, по раскрытии скобок,

cdM + Mdv – dMdv = 0.

Отбросив член dMdv как бесконечно малую второго порядка (произведение двух бесконечно малых величин), имеем уравнение:

cdM + Mdv = 0,

которое представляем в виде

Интегрируя это диференциальное уравнение, получаем:

или

Мы пришли к уравнению ракеты или ко «второй теореме Циолковского», которую он формулирует так:

«В среде без тяжести окончательная скорость (v) ракеты не зависит от силы и порядка взрывания, а только от количества взрывчатого материала (по отношению к массе ракеты) и от устройства взрывной трубы».

При всех этих вычислениях не учитывалось земное притяжение, влияние которого мы сейчас вкратце рассмотрим.

б) Движение ракеты в условиях тяжести. Ускорение а, приобретаемое ракетой при отвесном подъеме с Земли, равно, очевидно, разности между собственным ускорением ракеты р и ускорением земной тяжести g:

a = p – g.

Так как приобретаемая при этом ракетой окончательная скорость v1= at1 то продолжительность горения равна v1/ a , т. е.

Из этого равенства и из соотношения v= pt мы выводим, что при одинаковой продолжительности горения (t = t1):

откуда

Значит,

т. е. окончательная скорость ракеты в среде тяжести меньше, чем в среде без тяжести, на такую же долю, какую ускорение (g) тяжести составляет от собственного ускорения (р) ракеты.

Далее, зная из предыдущего, что в среде без тяжести

получаем, что окончательная скорость v1 ракеты в условиях тяжести

или

Формула (2) позволяет вычислить окончательную скорость, приобретаемую ракетой в поле тяготения, если известно отношение 

 масс заряженной и незаряженной ракеты и ее собственное ускорение р. Это последнее, мы знаем, не должно превышать 4-кратного ускорения земной тяжести, чтобы быть безвредным для человеческого организма. При p = 4g имеем

Формулы эти не принимают, конечно, в расчет сопротивления воздуха.

Полезное действие свободной ракеты и ракетного экипажа

Подсчитаем, какую долю энергии потребляемого горючего ракета переводит в полезную механическую работу.

Обозначим, как прежде, массу свободной ракеты до взрывания через М t , после взрывания – через Mt , после взрывания – через Mk ; масса израсходованного горючего выразится тогда через Mt – Mk , скорость вытекания газа – с. Живая сила вытекающих газов, т. е. кинетическая энергия, равна

Это – полное количество энергии, какое способно развить находящееся в ракете горючее. Получаемая же полезная работа, т. е. кинетическая энергия ракеты при скорости V, равна

Отношение второй величины к первой и есть коэфициент k полезного действия свободной ракеты:

или

Из формулы (2) имеем, что

Значит в среде без тяжести полезное действие ракеты:

Оно достигает наибольшей величины при v/c = 1,6 и равно тогда 65 %.

Если v/c невелико, можно формулу (4) упростить, исходя из того, что

Тогда

В среде тяжести выражение для k сложнее; для случая вертикального подъема его нетрудно вывести, подставив в формулу (3) соответствующее значение-

из формулы (2).

Иначе выразится коэффициент k полезного действия ракетного экипажа (вообще – несвободной ракеты), где существенную роль играют помехи движению, как трение и сопротивление воздуха. Рассмотрим случай равномерного движения авторакеты, т. е. случай, когда работа ракеты равна работе сопротивлений. Так как импульс силы равен количеству движения, то, обозначая через ƒ силу, выбрасывающую продукты взрыва (она равна силе, увлекающей автомобиль), а через t – продолжительность движения, имеем

ft = (M-Mk)c ,

где M t – масса автомобиля до взрывания, Mk – его масса после взрывания; с – скорость вытекания газа. Для удобства обозначим Mt – Mk , т. е. запас горючего, через Q , тогда

Полезная же работа автомобиля равна:

так как путь s = vt , где v – скорость автомобиля.

Энергия, затраченная при этом, составляется из двух частей: 1) из той, которая была израсходована на приведение горючего в равномерное движение со скоростью v; эта часть равна-1/2Q v 2; 2) из той, которая расходуется на сообщение частицам отбрасываемых газов скорости с ; часть эта равна – 1/2Q c2. Вся затраченная энергия равна

Отсюда искомое полезное действие

Оно достигает наибольшей величины при v = с, т. е. когда автомобиль движется со скоростью вытекания продуктов взрыва. По этой формуле легко вычислить полезное действие ракетного автомобиля; например, для с = 2000 м/с и V = 200 км/ч = 55 м/с:

k = 5,5 %.

Чтобы соперничать в экономичности с обыкновенным автомобилем, полезное действие которого около 20 %, авторакета должна обладать скоростью не ниже 760 км/ч. Но подобная скорость для колесного экипажа практически недопустима, так как сопряжена с опасностью разрыва бандажей колес центробежным эффектом.

4. Начальная скорость и продолжительность перелетов

Начальная скорость

Читатели пожелают, вероятно, узнать, как вычисляется скорость, с которой тело должно покинуть планету, чтобы преодолеть силу ее

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату