Кэли», широко используемое и по сей день. Многие математики теперь пользуются терминологией Кэли, называя эту систему октонионами, указывая при этом на авторство Грейвса. В любом случае такое название лучше, чем «октавы», поскольку оно напоминает «кватернионы».
Алгебру октонионов можно описывать в терминах замечательной диаграммы, известной как плоскость Фано. Она представляет собой конечную геометрию, составленную из семи точек, соединенных по три семью «прямыми» линиями, и имеет вид, показанный на рисунке.
Одну из прямых пришлось свернуть в окружность, чтобы изобразить ее на плоскости, но это не страшно. В этой геометрии любые две точки лежат на одной прямой, а любые две прямые пересекаются в некоторой точке. Параллельных прямых нет. Плоскость Фано была изобретена для совершенно иных целей, но оказалось, что она кодирует в себе правила умножения октонионов.
В октонионах имеется восемь единиц: обычное число 1 и еще семь, обозначаемые как
Плоскость Фано — геометрия с семью точками и семью прямыми.
Грейвс и Кэли не знали об этой связи с конечной геометрией, поэтому они выписывали таблицу умножения для октонионов. Как плоскость Фано помогает выразить эту таблицу, было открыто много позже.
На протяжении многих лет октонионы оставались диковинкой второго сорта. В отличие от кватернионов у них не было ни геометрической интерпретации, ни применений в науке. Даже внутри чистой математики из них, казалось, ничего не следует; неудивительно, что они впали в безвестность. Но все изменилось, когда выяснилось, что октонионы — источник наиболее причудливых алгебраических структур, известных в математике. Они дают объяснение, откуда на самом деле берутся пять Киллинговых исключительных групп Ли
Если мы соглашаемся с Дираком в том, что корни вселенной — в математике, то мы можем сказать, что вероятная Теория Всего существует постольку, поскольку существует
Красота есть истина, а истина — красота. Пифагорейцам и платоникам понравилось бы такое свидетельство определяющей роли математических структур в картине нашего мира. Октонионы обладают зачаровывающей, сюрреалистической математической красотой, за которую Дирак ухватился бы в качестве причины, указывающей, почему 10-мерная теория струн должна быть истинной. Если же она, на нашу беду, окажется ложной, то будет, тем не менее, даже более интересной, чем что бы то ни было иное, которое
Какова бы ни была их важность в физике, круг идей, связанных с октонионами, — чистое золото для математики.
Связь между октонионами и исключительными группами Ли представляет собой одно из целой серии странных соотношений между различными обобщениями кватернионов и передним краем современной физики. Я хочу достаточно глубоко рассмотреть некоторые из этих связей, чтобы вы смогли оценить, насколько они замечательны. И я собираюсь начать с некоторых из самых старых исключительных структур в математике — формул для сумм квадратов.
Одна такая формула естественно вытекает из комплексных чисел. Каждое комплексное число имеет «норму» — квадрат расстояния от числа до начала координат. По теореме Пифагора, норма числа
На начальном этапе математиков в теории чисел сильно занимали суммы двух квадратов, потому что с их помощью можно было различать два типа простых чисел. Легко доказать, что если нечетное число представляется в виде суммы двух квадратов, то оно должно иметь вид 4
Ферма сделал замечательное по красоте открытие: эти исключения не могут быть простыми числами. Он доказал, что, наоборот, каждое простое число вида 4
С другой стороны, исключение 21 есть 3?7, где оба простых имеют вид 4
Позднее Лагранж использовал аналогичные методы для доказательства того факта, что каждое