проницаемости. Биосинтез структурных фосфолипидов в печени направлен на обеспечение ими самой печени и других органов. Фосфолипиды оказывают липотропное действие, способствуя мицеллообразованию жиров в пищеварительном тракте, транспорту их из печени, а также и стабилизируя липопротеины.
Поступающий из кишечника в составе хиломикронов холестерин в значительной степени задерживается в печени, где используется для построения мембран гепатоцитов и в синтезе желчных кислот. В составе желчи в результате реабсорбции в организм возвращается около 40 % жиров. Не подвергшиеся обратному всасыванию в кишечнике холестерин и желчные кислоты – это основной путь выведения холестерина из организма. В кровотоке липиды существуют в составе транспортных форм: хиломикронов, липопротеидов очень низкой плотности (ЛПОНП), липопротеидов низкой плотности (ЛПНП) и липопротеидов высокой плотности (ЛПВП). В энтероцитах образуются хиломикроны и ЛОПНП, в гепатоцитах – ЛПОНП и ЛПВП, в плазме крови – ЛПВП и ЛПНП (рис. 3.3).
Хиломикроны и ЛПОНП транспортируют преимущественно триглицериды, а ЛПНП и ЛПВП – холестерин. Холестерин-содержащие липопротеиды регулируют баланс холестерина в клетках: ЛПНП обеспечивают потребности, а ЛПВП предупреждают избыточное накопление.
Различают пять типов дислипопротеинемий. I тип связан с нарушением лизиса хиломикронов, Па тип – результат нарушения распада ЛПНП и снижения поступления холестерина в клетку, II тип характеризуется замедлением распада ЛПОНП, IV тип связан с усилением синтеза триглицеридов в печени в результате гиперинсулинизма, механизмы развития Пб и V типов точно не известны.
На состав триглицеридов и липопротеинов выраженное влияние оказывает состав пищи. Продукты животного происхождения, включающие преимущественно полиненасыщенные жирные кислоты и холестерин, имеют атерогенный эффект, влияют на содержание в крови ЛПВП и триглицеридов. Наоборот, ненасыщенные жирные кислоты (их источник растительные масла) и в особенности ω-3-жирные кислоты (содержащиеся в жире рыб) оказывают профилактическое действие (табл. 3.6).Таблица 3.6 Влияние жирных кислот на липопротеидный спектр
Примечание: ↑ – повышают, ↓ – снижают.
Рис. 3.3. Обмен холестерина (ХС) (по: Arias I. М. et al., 1982) (схема).
Как и при метаболизме углеводов, ведущую роль в липидном обмене играет
Энергетический потенциал липидов обеспечивает более половины основной энергетической потребности большинства тканей, что особенно выражено в условиях голода. При голодании или снижении утилизации глюкозы, триглицериды жировой ткани гидролизируются в жирные кислоты, которые в таких органах, как сердце, мышцы и печень подвергаются интенсивному (β-окислению с образованием АТФ.
Продуктами неполной утилизации жиров печенью являются кетоновые тела. К ним относятся ацетоуксусная кислота, (β-оксибутират и ацетон. В норме кетоны образуются в незначительном количестве и полностью утилизируются как источник энергии нервной тканью, скелетными и висцеральными мышцами. В условиях ускоренного катаболизма жирных кислот и/или снижения утилизации углеводов синтез кетонов может превысить возможности их окисления внепеченочными органами и привести к развитию метаболического ацидоза. Ингибирующее влияние на кетоногенез оказывают углеводы рациона.
Кетоны используются и
Свободнорадикальные формы кислорода вызывают процессы перекисного окисления, которому в первую очередь подвержены полиненасыщенные жирные кислоты. Это физиологический процесс, обеспечивающий регуляцию активности клеток. Однако при избыточном образовании свободных радикалов их окислительная активность приводит к нарушению структуры и гибели клетки. Для ограничения перекисного окисления существует система антиоксидантной защиты, которая ингибирует образование свободных радикалов и разлагает токсичные продукты их окисления. Функционирование этой системы во многом зависит от алиментарно поступающих антиоксидантов: токоферолов, селена, серосодержащих аминокислот, аскорбиновой кислоты, рутина.
Синтез жирных кислот (за исключением эссенциальных) может происходить из любых веществ, для которых конечным продуктом метаболизма является ацетил-КоА, но основным источником липогенеза являются углеводы. При излишнем количестве глюкозы в печени (после еды) и достаточных запасах гликогена глюкоза начинает разлагаться до предшественников жирных кислот. Если потребление углеводов превышает энергетические потребности организма, то их избыток в дальнейшем превращается в жиры.
Регуляция метаболизма жирных кислот и глюкозы тесно связана: повышенное окисление жирных кислот ингибирует утилизацию глюкозы. Поэтому инфузия жировых эмульсий с соответственным повышением уровня свободных жирных кислот в крови ослабляет действие инсулина на утилизацию глюкозы и стимулирует печеночный глюконеогенез. Этот момент немаловажен при парентеральном питании больных с изначально нарушенной толерантностью к глюкозе.
Взаимосвязь между обменом основных нутриентов осуществляется за счет существования общих предшественников и промежуточных продуктов метаболизма. Наиболее важным общим продуктом метаболизма, участвующим во всех обменных процессах, является ацетил-КоА. (рис. 3.4). Поток веществ в сторону липогенеза от углеводных и белковых источников через ацетил-КоА носит однонаправленный характер, поскольку в организме не существует механизма, обеспечивающего превращение этого двухуглеродного вещества в трехуглеродные соединения, необходимые для глюконеогенеза или синтеза заменимых аминокислот. Хотя при катаболизме липидов и происходит образование небольших количеств промежуточных трехуглеродных продуктов, оно малозначительно.
Общим конечным путем всех метаболических систем является цикл Кребса и реакции дыхательной цепи. Цикл лимонной кислоты является поставщиком двуокиси углерода для реакций синтеза жирных кислот и глюконеогенеза, образования мочевины и пуринов и пиримидинов. Взаимосвязь между процессами углеводного и азотного обмена достигается посредством промежуточных продуктов цикла Кребса. Другие звенья этого цикла являются предшественниками липонеогенеза.
Основную роль в метаболизме всех нутриентов играет печень (табл. 3.7).
Рис. 3.4. Основные взаимоотношения в метаболизме липидов (по Бышевскому А. Ш., Терсенову О. А., 1994; схема).
Таблица 3.7 Роль печени в метаболизме белков, жиров и углеводов
Глава 4 Научные основы питания здорового и больного человека
Для всех живых организмов пища – источник энергии и веществ, обеспечивающих их жизнедеятельность, а питание (совокупность процессов, включающих