что энзиматический барьер, состоящий из пищеварительных гидролаз, представлен рядом отдельных пространственно разделенных барьеров, но в целом образует единую взаимодействующую систему. Таким образом, желудочно-кишечный тракт – это не только ассимиляторная система, но и барьер (или система барьеров), предотвращающий поступление вредных веществ во внутреннюю среду организма.

В заключение надо сделать несколько замечаний о патологии мембранного пищеварения, так как патология полостного пищеварения известна клиницистам значительно лучше.

Итак, в настоящее время известно, что при различных заболеваниях желудочно-кишечного тракта наблюдаются выраженные нарушения полостного и мембранного пищеварения, а также всасывания. Нарушения могут иметь инфекционную и неинфекционную этиологию, быть приобретенными или наследственными. Например, у взрослого человека расщепление пищевых веществ происходит преимущественно в проксимальной части тонкой кишки, тогда как дистальная часть служит резервной зоной. Любое каудальное смещение приводит к тому, что не полностью гидролизованный субстрат поступает в толстую кишку и вызывает явления типа пищевых интолерантностей, то есть непереносимостей. Дефекты мембранного пищеварения и всасывания возникают также при нарушениях распределения ферментных и транспортных активностей тонкой кишки после оперативных вмешательств, в частности после резекции различных отделов тонкой кишки.

Известные формы патологии мембранного пищеварения могут быть обусловлены атрофией ворсинок и микроворсинок, нарушениями структуры и ультраструктуры кишечных клеток, изменением ферментного слоя и сорбционных свойств структур кишечной слизистой оболочки, расстройством моторики кишечника, при котором нарушается перенос пищевых субстратов из полости тонкой кишки на ее поверхность, при дисбактериозах, при дефектах транспортных систем и т. д.

Нарушения мембранного пищеварения встречаются при довольно широком круге заболеваний (тропическая и нетропическая формы спру, азиатская холера, различные гастроэнтериты, энтероколиты, илеоеюниты и т. д.), а также после интенсивной терапии антибиотиками, различных оперативных вмешательств на желудочно-кишечном тракте (например, после гастроеюностомии и субтотальной резекции желудка). При многих вирусных заболеваниях (полиомиелите, свинке, аденовирусном гриппе, гепатите и кори) возникают тяжелые расстройства пищеварения и всасывания с явлениями диареи и стеатореи. При этих заболеваниях имеет место в различной степени выраженная атрофия ворсинок, нарушения структуры щеточной каймы, недостаточность ферментного слоя кишечной слизистой, что, естественно, приводит к нарушениям мембранного пищеварения.

Нередко нарушения структуры щеточной каймы, что само по себе ведет к серьезным дефектам мембранного пищеварения, сочетаются с резким уменьшением ферментативной активности кишечных клеток. Известны многочисленные случаи, при которых структура щеточной каймы остается практически нормальной, но тем не менее обнаруживается недостаточность одного или нескольких пищеварительных ферментов. Многие пищевые интолерантности обусловлены этими специфическими нарушениями ферментного слоя кишечных клеток (сахаразная, лактазная, изомальтазная и др.).

Ферментные недостаточности кишечной слизистой оболочки могут быть связаны как с нарушением синтеза ферментов в кишечных клетках, так и с нарушением их встраивания в апикальную плазматическую мембрану. Они могут быть также обусловлены ускорением деградации соответствующих кишечных ферментов.

Таким образом, для правильной интерпретации ряда заболеваний, и в том числе патологии желудочно-кишечного тракта, необходимо учитывать нарушение мембранного пищеварения. Дефекты этого механизма приводят к изменениям поступления необходимых пищевых веществ в организм с далеко идущими последствиями.

Открытие академиком А. М. Уголевым мембранного пищеварения позволило внести существенный вклад в развитие современной теории питания.

В заключение напомним один из важнейших заветов Гиппократа: «Позвольте пище быть вашим лекарством».

Глава 5 Потребности организма в белке и энергии

Потребность в белке

Определение потребности в белке

Потребность в белке определяется двумя основными методами:

– факториальным методом – измерением потерь азота, расцениваемых как облигатные, при употреблении безбелковой диеты;

– путем оценки азотного баланса – определение в рационе минимального количества белка, необходимого для поддержания азотного равновесия.

ВОЗ и рядом других международных организаций были проведены исследования, направленные на определение уровня потребления белка, безопасного для здоровья человека. Их результаты были обобщены в 1985 г. в «WHO/FAO/ UNU Report: Energy and Protein Requirments».

Согласно данным ВОЗ/ФАО минимальные облигатные потери азота с мочой составляют 37 мг/сут/кг массы тела, через гастроинтестинальный тракт (с фекалиями, секретами и десквамированными клетками) – 2 мг/сут, с кожей и ее дериватами – 4–8 мг/сут, другими путями (при дыхании, со спермой и т. п.) – 2 мг/сут для мужчины и 3 мг/сут для женщины на 1 кг массы тела.

Потребность в белке, необходимом для поддержания азотного баланса, колеблется от 0,45 до 0,57 г/кг массы тела. Этот разброс в значениях определяется источником белка и уровнем потребления энергии. То есть количество белка, необходимого организму для сохранения стабильного азотного обмена, варьирует в зависимости от калорийности одновременно поступающих энергетических субстратов и качественного состава вводимого протеина.

Высокий уровень обеспечения организма энергией позволяет значительно снизить потребность в белке. Например, при энергетическом обеспечении 45 ккал/кг для достижения азотного равновесия необходимо вводить 0,65 г/кг яичного белка. При увеличении энергетического компонента до 57 г/кг потребность в нем снижается до 0,45 г/кг. Аналогично, при низком потреблении энергии организм нуждается в 0,87 г/кг рисового белка, если он является единственным белком в рационе. Высокий уровень энергообеспечения уменьшает эту дозу до 0,58 г/кг.

Кроме того, сохранение азотного равновесия достигается при меньшем количестве высококачественного белка, близкого к «идеальному».

Понятие «идеального» белка , содержащего оптимальные соотношения незаменимых аминокислот, разработано ФАО (1957) (табл. 5.1). Состав его сходен с составом белка молока и яиц. Далеки от «идеального» растительные белки, за исключением соевых бобов, имеющие дефицит незаменимых аминокислот. Так, зерновые и орехи содержат мало лизина и триптофана, бобовые бедны серосодержащими аминокислотами. Это имеет большое значение при подборе вегетарианской диеты, когда смесь белков из разных растительных источников, имеющих дефицит различных аминокислот, может составить относительно «здоровую» диету.

Таблица 5.1 Потребности в незаменимых аминокислотах («идеальный» белок)

Понятие качества белка основано на концепции, что ценность пищевого белка определяется незаменимой аминокислотой, присутствующей в минимальной концентрации по отношению к потребностям человека. Таким образом, качество белка оценивается по аминокислотному числу, рассчитываемому как отношение количества лимитирующей аминокислоты по сравнению с белком «идеальным».

Кроме аминокислотного состава значимость белка в питании определяется его усвояемостью. Классической оценкой является «биологическая ценность белка» – величина абсорбируемого из данного белка азота, определяемая путем измерения экскреции азота относительно его потребления. Скорость переваривания и абсорбции наиболее высока у рыбного и молочного белка, несколько ниже у мясного и наиболее мала у растительных белков (подробнее о биологической ценности белков в главе «Пищевая и биологическая ценность продуктов питания»).

Знание аминокислотного состава продуктов позволяет оценить их пищевую ценность для человека, используя аминокислотное число как показатель качества. Однако отдельные процессы могут значительно изменять белковую ценность продуктов. Так, некоторые сырые растения (соевые бобы) содержат ингибиторы трипсина, влияющего на процессы переваривания, который разрушается при нагревании. Снижение биологической ценности белка может происходить при неправильном хранении или тепловой обработке. При нагревании лизина в присутствии восстанавливающих сахаров происходит его связывание (например, при кипячении молока). При сильном нагревании, особенно в присутствии сахаров или окисленных жиров, белки могут стать устойчивыми к перевариванию, что также уменьшает доступность аминокислот. При обработке щелочами возможно образование токсичного соединения лизина с цистеином. В условиях окисления белок теряет метионин.

На утилизацию аминокислот может влиять их сбалансированность в рационе. В экспериментальных исследованиях описаны токсические и антагонистические эффекты при несбалансированном приеме определенных аминокислот. Наиболее выраженными токсическими эффектами при избыточном введении обладают метионин, гистидин и тирозин. При этом отдельные аминокислоты (например аргинин) могут нейтрализовать токсический эффект других.
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату