всяком случае, запрос вырос в постановку проблемы, которую уже нельзя было решить рутинными расчетами.

Я прервал все другие работы и несколько недель был занят только этой новой задачей. Я спрашивал себя: какого вообще самого большого значения температуры может достичь быстро летящее тело вследствие уплотнения воздуха? Ясно, что максимальная температура возникнет в головке ракеты, то есть в точке максимального давления. На основе законов термодинамики возникла простая формула. Если скорость полета возвести в квадрат, а затем ввести в расчет удельную теплоемкость воздуха, тогда можно рассчитать повышение температуры в передней критической точке, она равняется скорости в квадрате, деленной на две тысячи. Скорость полета ракеты Г1, которая должна лететь на расстояние в тысячу километров, может достигать порядка двух тысяч метров в секунду. Тогда по моей формуле повышение температуры могло бы составить две тысячи градусов. Я ужаснулся этому результату. При такой высокой температуре плавится даже сталь. Мы же тогда думали о применении легких металлов в качестве материала для оболочки ракеты, все проекты ракеты Г1 в Блайхероде были продуманы в этом направлении. Но эта температура могла повышаться за счет уплотнения воздуха только в одной-единственной передней критической точке. Я все еще был уверен в своей концепции. Во всех остальных местах, по моему тогдашнему воззрению, температура была намного ниже, такой, как я ее и рассчитал первоначально. Я спросил себя: есть ли еще какой-то физический фактор, который может повысить температуру? Да, есть — это трение. Трение воздуха о поверхность ракеты. Воздух, обтекающий ракету, тормозится в совсем тонком слое на ее поверхности, аэродинамики называют этот слой пограничным. Вся кинетическая энергия воздуха превращается в тепло и дает повышение температуры, которая соответствует ее значению в передней критической точке. Если учесть трение, а его нужно учитывать, тогда напрашивается вывод, что при полете в каждой точке корпуса ракеты, а не только в передней критической точке, может быть достигнута эта предельно высокая температура. И если бы ракетная оболочка нагревалась так же сильно, как и воздух, тогда было бы невозможно найти материалы, имеющие соответствующую теплостойкость.

Тем самым, для достижения дальности полета надо было использовать целую батарею ракет. Или, все-таки, это препятствие можно преодолеть? Я подумал, что до сих пор рассчитывал повышение температуры только воздуха, но, чтобы тепло от воздуха перешло к ракете, требуется определенное время. А ведь время полета ракеты очень непродолжительно. Активная фаза движения к началу восходящей ветви траектории полета, в то время, когда еще работает двигатель, длится не более одной минуты. Вполне возможно, что температура в оболочке в течение такого короткого времени, повышается не так сильно. Я должен был попытаться рассчитать разогрев оболочки при сверхзвуковом полете. Мне было неизвестно, делал ли кто-нибудь такие расчеты раньше. В Городомле в нашем распоряжении были только те книги, которые мы взяли с собой. Я нашел в одной из моих тетрадей старую работу Геттингенского теоретика Адольфа Буземанна, который рассчитал коэффициент теплопередачи от воздуха к стенке при высокой скорости полета для ламинарных пограничных слоев. Я применил этот расчет для турбулентного пограничного слоя, полагая, что он присутствует при полете ракеты. Я использовал работу гидроаэродинамика Теодора фон Кармана, который рассчитал теплопередачу на основании аналогии между элементарными уравнениями трения и теплопереноса. Результаты моего расчета показали, что в течение полета достигаются температуры, которые несколько ниже температуры в передней критической точке. Для нашей ракеты я мог из расчета баллистической траектории полета использовать мгновенные значения скорости и плотности воздуха и численным методом решить дифференциальное уравнение теплоотдачи. Результат расчета позволил увидеть, что тепло передается довольно медленно и что температура всей оболочки все же остается гораздо ниже температуры в передней критической точке. На восходящей ветви траектории полета она имеет более низкие значения, чем на нисходящей вблизи цели. Но и на восходящей ветви температура корпуса достигает такого значения, при котором обычные листы легких металлов, применяемые в авиастроении, могут потерять свою прочность. Значит, надо применять листовую сталь. Расчет показал, что теплообмен увеличивается с ростом произведения плотности воздуха на скорость полета. Вследствие этого разница между теплообменом на восходящей и нисходящей ветви траектории полета очень большая. При подъеме высокая скорость достигается на большой высоте, там плотность воздуха мала. Поэтому повышение температуры — умеренное. На нисходящей ветви, то есть вблизи цели, скорость остается примерно такой же, а плотность воздуха у поверхности земли имеет наибольшее значение. Там тепло передается корпусу ракеты очень интенсивно. В результате я получил температуры, которые могли бы разрушить даже стальную оболочку.

Таким образом, мне показалось, что причина «преждевременного взрыва в воздухе» ракеты А4 найдена. И для еще более скоростной ракеты Г1 с большей дальностью полета этот эффект мог бы стать непреодолимым препятствием и затруднил бы использование подобных ракет дальнего действия.

Выход предложил господин Греттруп, который воскресил старую идею инженеров из Пенемюнде, состоявшую в том, что передняя часть ракеты, то есть грузовая головка, несущая взрывчатое вещество, после пролета по восходящей ветви траектории отделяется от остального уже отработавшего корпуса ракеты. Только грузовая головка летит к цели, и только она имеет необходимую прочную оболочку. Отделившийся корпус ракеты cгорает в толстом слое земной атмосферы.

Теперь, оглядываясь назад, можно быстро и легко рассказать об обосновании и разработке расчетного метода. Но в технике и естествознании процесс поиска оптимального решения зачастую вовсе не так прямолинеен, как это может показаться потом, а обманчивая ясность результата подразумевает длительные размышления и сомнения, следование окольными и тупиковыми путями. Это так называемый метод проб и ошибок — «Trial and error», когда постепенно, шаг за шагом, нащупываются предпосылки и способы решения проблемы. Неоднократно происходит возвращение назад, в ту исходную точку, где еще не было никаких сомнений, исправляются найденные ошибки и снова начинается осторожное прощупывание новых направлений поиска. При этом требуются как знания, так и идеи, поэтому при работе над решением новой и трудной задачи полезна каждая дискуссия, каждое критическое замечание коллег. И когда окончательный результат достигнут и четко сформулирован, мало кто может представить себе те сложные и запутанные пути, которыми исследователь пришел к этому результату. Все ненужное отсекается, остается ясная и последовательная цепь рассуждений.

В Городомле наша исследовательская работа сильно осложнялась невозможностью контактов с аэродинамическими и термодинамическими институтами, недостатком современной литературы и отсутствием доступа к библиотекам. Надо отдать должное, состав нашего коллектива был очень подходящим для быстрого решения задач. Во-первых, теоретиков стимулировало то, что вопросы ставили специалисты- практики. Во-вторых, конструкторы и исследователи работали вместе, под одной крышей, а общая задача требовала именно тесной совместной работы.

Тогда вопрос разогрева корпуса ракеты, которая летит со сверхзвуковой скоростью, был неясен даже специалистам и вызывал недоверие и много возражений даже в рядах собственного коллектива. Некоторые коллеги не верили в существование этого эффекта, со стороны русских инженеров, как рассказывал мне господин Греттруп, также высказывались скептические соображения. Тогда я еще не мог подтвердить мои расчеты результатами экспериментов. Это удалось только, когда мы построили в Городомле собственную аэродинамическую трубу. Также в конце нашего пребывания в Городомле, когда мы получили возможность познакомиться с иностранными техническими журналами, я прочитал (мне кажется, это был американский «Journal of the Aeronautic Science») об измерениях, которые подтверждали мое представление о теплопередаче при высокой скорости. Очень часто в разных точках Земли одновременно работают над одинаковыми проблемами. Сегодня любой студент находит подобный метод расчета характеристик пограничного слоя в учебнике по термодинамике как общепризнанное достижение науки.

А тогда профессор Вальтер Пауер, термодинамик, был первым коллегой, который со мной согласился. Он рассказал о своем опыте в Первую Мировую войну. Если взять неразорвавшуюся вражескую артиллерийскую гранату, которую солдаты называют «неудачником», то после падения она очень горячая. Я подумал, что даже маленькое космическое тело, попадая с большой скоростью в земную атмосферу, разогревается таким же образом и светится как метеор. Доктор Иоханнес Хоппе, астроном, работавший в секторе измерительной техники, тут же согласился со мной. Он использовал мой новый метод, чтобы рассчитать на досуге разогрев метеоритов и метеоров.

Господин Иоханнес Хоппе, которого русские называли «Гоганнес Гоппе», позднее, возвратившись на родину, многие годы работал профессором астрономии в университете города Йена. Незадого перед его

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату