эконометрические модели позволяют просчитывать последствия тех или иных решений, прогнозировать развитие событий. Методы экспертных оценок, о которых пойдет речь ниже, также весьма математизированы и используют компьютеры.

Наиболее часто используются оптимизационные модели принятия решений. Их общий вид таков:

F ( X ) → max

X Є A

Здесь Х – параметр, который менеджер может выбирать (управляющий параметр). Он может иметь различную природу – число, вектор, множество и т. п. Цель менеджера – максимизировать целевую функцию F ( X ), выбрав соответствующий Х .. При этом он должен учитывать ограничения X Є A на возможные значения управляющего параметра Х – он должен лежать в множестве А. Ряд примеров оптимизационных задач менеджмента приведен ниже.

3.2.1. Линейное программирование

Среди оптимизационных задач менеджмента наиболее известны задачи линейного программирования, в которых максимизируемая функция F ( X ) является линейной, а ограничения А задаются линейными неравенствами. Начнем с примера.

Производственная задача. Цех может производить стулья и столы. На производство стула идет 5 единиц материала, на производство стола – 20 единиц (футов красного дерева). Стул требует 10 человеко—часов, стол – 15. Имеется 400 единиц материала и 450 человеко—часов. Прибыль при производстве стула – 45 долларов США, при производстве стола – 80 долларов США. Сколько надо сделать стульев и столов, чтобы получить максимальную прибыль?

Обозначим: Х 1 – число изготовленных стульев, Х 2 – число сделанных столов. Задача оптимизации имеет вид:

45 Х 1 + 80 Х 2 → max,

5 Х 1 + 20 Х 2 ≤ 400,

10 Х 1 + 15 Х 2 ≤ 450,

Х 1 ≥ 0,

Х 2 ≥ 0.

В первой строке выписана целевая функция – прибыль при выпуске Х 1 стульев и Х 2 столов. Ее требуется максимизировать, выбирая оптимальные значения переменных Х 1 и Х 2 . При этом должны быть выполнены ограничения по материалу (вторая строчка) – истрачено не более 400 футов красного дерева. А также и ограничения по труду (третья строчка) – затрачено не более 450 часов. Кроме того, нельзя забывать, что число столов и число стульев неотрицательны. Если Х 1 = 0, то это значит, что стулья не выпускаются. Если же хоть один стул сделан, то Х 1 положительно. Но невозможно представить себе отрицательный выпуск – Х 1 не может быть отрицательным с экономической точки зрения, хотя с математической точки зрения такого ограничения усмотреть нельзя. В четвертой и пятой строчках задачи и констатируется, что переменные неотрицательны.

Условия производственной задачи можно изобразить на координатной плоскости. Будем по горизонтальной оси абсцисс откладывать значения Х 1, а по вертикальной оси ординат – значения Х 2. Тогда ограничения по материалу и последние две строчки оптимизационной задачи выделяют возможные значения ( Х 1, Х 2) объемов выпуска в виде треугольника.

Таким образом, ограничения по материалу изображаются в виде выпуклого многоугольника, конкретно, треугольника. Этот треугольник получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей второй строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х 1, соответствующую стульям, в точке (80,0). Это означает, что если весь материал пустить на изготовление стульев, то будет изготовлено 80 стульев. Та же прямая пересекает ось Х 2, соответствующую столам, в точке (0,20). Это означает, что если весь материал пустить на изготовление столов, то будет изготовлено 20 столов. Для всех точек внутри треугольника выполнено неравенство, а не равенство – материал останется.

Аналогичным образом можно изобразить и ограничения по труду.

Таким образом, ограничения по труду, как и ограничения по материалу, изображаются в виде треугольника. Этот треугольник также получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей третьей строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х 1, соответствующую стульям, в точке (45,0). Это означает, что если все трудовые ресурсы пустить на изготовление стульев, то будет сделано 45 стульев. Та же прямая пересекает ось Х 2, соответствующую столам, в точке (0,30). Это означает, что если всех рабочих поставить на изготовление столов, то будет сделано 30 столов. Для всех точек внутри треугольника выполнено неравенство, а не равенство – часть рабочих будет простаивать.

Мы видим, что очевидного решения нет – для изготовления 80 стульев есть материал, но не хватает рабочих рук, а для производства 30 столов есть рабочая сила, но нет материала, Значит, надо изготавливать и то, и другое. Но в каком соотношении?

Чтобы ответить на этот вопрос, надо «совместить» графики, получив область возможных решений, а затем проследить, какие значения принимает целевая функция на этом множестве.

Таким образом, множество возможных значений объемов выпуска стульев и столов ( Х 1, Х 2 ), или, в других терминах, множество А , задающее ограничения на параметр управления в общей оптимизационной задаче, представляет собой пересечение двух треугольников, т. е. выпуклый четырехугольник. Три его вершины очевидны – это (0,0), (45,0) и (0,20). Четвертая – это пересечение двух прямых – границ треугольников, т. е. решение системы уравнений

5 Х 1 + 20 Х 2 = 400,

10 Х 1 + 15 Х 2 = 450.

Из первого уравнения: 5 Х 1 = 400 – 20 Х 2, Х 1 = 80 – 4 Х 2. Подставляем во второе уравнение:

10 (80 – 4 Х 2) + 15 Х 2 = 800 – 40 Х 2 + 15 Х 2 = 800 – 25 Х 2 = 450,

следовательно, 25 Х 2 = 350, Х 2 = 14, откуда Х 1 = 80 – 4 х 14 = 80–56 =24. Итак, четвертая вершина четырехугольника – это (24, 14).

Надо найти максимум линейной функции на выпуклом многоугольнике (в общем случае линейного программирования – максимум линейной функции на выпуклом многограннике, лежащем в конечномерном линейном пространстве). Основная идея линейного программирования состоит в том, что максимум достигается в вершинах многоугольника. В общем случае – в одной вершине, и это – единственная точка максимума. В частном – в двух, и тогда отрезок, их соединяющий, тоже состоит из точек максимума.

Целевая функция 45 Х 1 + 80 Х 2 принимает минимальное значение, равное 0, в вершине (0,0). При увеличении аргументов эта функция увеличивается. В вершине (24,14) она принимает значение 2200. При этом прямая 45 Х 1 + 80 Х 2 = 2200 проходит между прямыми ограничений 5 Х 1 + 20 Х 2 = 400 и 10 Х 1 + 15 Х 2 = 450, пересекающимися в той же точке. Отсюда, как и из непосредственной проверки двух оставшихся вершин, вытекает, что максимум целевой функции, равный 2200, достигается в вершине (24,14).

Таким образом, оптимальный выпуск таков: 24 стула и 14 столов. При этом используется весь материал и все трудовые ресурсы, а прибыль равна 2200 долларам США.

Двойственная задача . Каждой задаче линейного программирования соответствует так называемая двойственная задача. В ней по сравнению с исходной задачей строки переходят в столбцы, неравенства меняют знак, вместо максимума ищется минимум (или, наоборот, вместо минимума – максимум). Задача, двойственная к двойственной – эта сама исходная задача. Сравним исходную задачу (слева) и двойственную к ней (справа):

45 Х 1 + 80 Х 2 → max, 400 W 1 + 450 W 2 → min,

5 Х 1 + 20 Х 2 ≤ 400, 5 W 1 + 10 W 2 ≥ 45,

10 Х 1 + 15 Х 2 ≤ 450, 20 W 1 + 15 W 2 ≥ 80,

Х 1 ≥ 0, W 1 ≥ 0,

Х 2 ≥ 0. W 2

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×