work out its age. He tested a piece of pitchblende, the principal ore of uranium, and found it to be 700 million years old-very much older than the age most people were prepared to grant the Earth.

In the spring of 1904, Rutherford traveled to London to give a lecture at the Royal Institution-the august organization founded by Count von Rumford only 105 years before, though that powdery and periwigged age now seemed a distant eon compared with the roll-your-sleeves-up robustness of the late Victorians. Rutherford was there to talk about his new disintegration theory of radioactivity, as part of which he brought out his piece of pitchblende. Tactfully-for the aging Kelvin was present, if not always fully awake-Rutherford noted that Kelvin himself had suggested that the discovery of some other source of heat would throw his calculations out. Rutherford had found that other source. Thanks to radioactivity the Earth could be-and self-evidently was-much older than the twenty-four million years Kelvin’s calculations allowed.

Kelvin beamed at Rutherford’s respectful presentation, but was in fact unmoved. He never accepted the revised figures and to his dying day believed his work on the age of the Earth his most astute and important contribution to science-far greater than his work on thermodynamics.

As with most scientific revolutions, Rutherford’s new findings were not universally accepted. John Joly of Dublin strenuously insisted well into the 1930s that the Earth was no more than eighty-nine million years old, and was stopped only then by his own death. Others began to worry that Rutherford had now given them too much time. But even with radiometric dating, as decay measurements became known, it would be decades before we got within a billion years or so of Earth’s actual age. Science was on the right track, but still way out.

Kelvin died in 1907. That year also saw the death of Dmitri Mendeleyev. Like Kelvin, his productive work was far behind him, but his declining years were notably less serene. As he aged, Mendeleyev became increasingly eccentric-he refused to acknowledge the existence of radiation or the electron or anything else much that was new-and difficult. His final decades were spent mostly storming out of labs and lecture halls all across Europe. In 1955, element 101 was named mendelevium in his honor. “Appropriately,” notes Paul Strathern, “it is an unstable element.”

Radiation, of course, went on and on, literally and in ways nobody expected. In the early 1900s Pierre Curie began to experience clear signs of radiation sickness-notably dull aches in his bones and chronic feelings of malaise-which doubtless would have progressed unpleasantly. We shall never know for certain because in 1906 he was fatally run over by a carriage while crossing a Paris street.

Marie Curie spent the rest of her life working with distinction in the field, helping to found the celebrated Radium Institute of the University of Paris in 1914. Despite her two Nobel Prizes, she was never elected to the Academy of Sciences, in large part because after the death of Pierre she conducted an affair with a married physicist that was sufficiently indiscreet to scandalize even the French-or at least the old men who ran the academy, which is perhaps another matter.

For a long time it was assumed that anything so miraculously energetic as radioactivity must be beneficial. For years, manufacturers of toothpaste and laxatives put radioactive thorium in their products, and at least until the late 1920s the Glen Springs Hotel in the Finger Lakes region of New York (and doubtless others as well) featured with pride the therapeutic effects of its “Radioactive mineral springs.” Radioactivity wasn’t banned in consumer products until 1938. By this time it was much too late for Madame Curie, who died of leukemia in 1934. Radiation, in fact, is so pernicious and long lasting that even now her papers from the 1890s-even her cookbooks- are too dangerous to handle. Her lab books are kept in lead-lined boxes, and those who wish to see them must don protective clothing.

Thanks to the devoted and unwittingly high-risk work of the first atomic scientists, by the early years of the twentieth century it was becoming clear that Earth was unquestionably venerable, though another half century of science would have to be done before anyone could confidently say quite how venerable. Science, meanwhile, was about to get a new age of its own-the atomic one.

PART III A NEW AGE DAWNS

A physicist is the atoms' way of thinking about atoms.

Anonymous

8 EINSTEIN’S UNIVERSE

AS THE NINETEENTH century drew to a close, scientists could reflect with satisfaction that they had pinned down most of the mysteries of the physical world: electricity, magnetism, gases, optics, acoustics, kinetics, and statistical mechanics, to name just a few, all had fallen into order before them. They had discovered the X ray, the cathode ray, the electron, and radioactivity, invented the ohm, the watt, the Kelvin, the joule, the amp, and the little erg.

If a thing could be oscillated, accelerated, perturbed, distilled, combined, weighed, or made gaseous they had done it, and in the process produced a body of universal laws so weighty and majestic that we still tend to write them out in capitals: the Electromagnetic Field Theory of Light, Richter’s Law of Reciprocal Proportions, Charles’s Law of Gases, the Law of Combining Volumes, the Zeroth Law, the Valence Concept, the Laws of Mass Actions, and others beyond counting. The whole world clanged and chuffed with the machinery and instruments that their ingenuity had produced. Many wise people believed that there was nothing much left for science to do.

In 1875, when a young German in Kiel named Max Planck was deciding whether to devote his life to mathematics or to physics, he was urged most heartily not to choose physics because the breakthroughs had all been made there. The coming century, he was assured, would be one of consolidation and refinement, not revolution. Planck didn’t listen. He studied theoretical physics and threw himself body and soul into work on entropy, a process at the heart of thermodynamics, which seemed to hold much promise for an ambitious young man.[15] In 1891 he produced his results and learned to his dismay that the important work on entropy had in fact been done already, in this instance by a retiring scholar at Yale University named J. Willard Gibbs.

Gibbs is perhaps the most brilliant person that most people have never heard of. Modest to the point of near invisibility, he passed virtually the whole of his life, apart from three years spent studying in Europe, within a three-block area bounded by his house and the Yale campus in New Haven, Connecticut. For his first ten years at Yale he didn’t even bother to draw a salary. (He had independent means.) From 1871, when he joined the university as a professor, to his death in 1903, his courses attracted an average of slightly over one student a semester. His written work was difficult to follow and employed a private form of notation that many found incomprehensible. But buried among his arcane formulations were insights of the loftiest brilliance.

In 1875-78, Gibbs produced a series of papers, collectively titled On the Equilibrium of Heterogeneous Substances, that dazzlingly elucidated the thermodynamic principles of, well, nearly everything-“gases, mixtures, surfaces, solids, phase changes . . . chemical reactions, electrochemical cells, sedimentation, and osmosis,” to quote William H. Cropper. In essence what Gibbs did was show that thermodynamics didn’t apply simply to heat and energy at the sort of large and noisy scale of the steam engine, but was also present and influential at the atomic level of chemical reactions. Gibbs’s Equilibrium has been called “the Principia of thermodynamics,” but for reasons that defy speculation Gibbs chose to publish these landmark observations in the Transactions of the Connecticut Academy of Arts and Sciences, a journal that managed to

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×