slenderness way beyond the capacity of our imaginations, but you can get some idea of the proportions if you bear in mind that one atom is to the width of a millimeter line as the thickness of a sheet of paper is to the height of the Empire State Building.

It is of course the abundance and extreme durability of atoms that makes them so useful, and the tininess that makes them so hard to detect and understand. The realization that atoms are these three things-small, numerous, practically indestructible-and that all things are made from them first occurred not to Antoine-Laurent Lavoisier, as you might expect, or even to Henry Cavendish or Humphry Davy, but rather to a spare and lightly educated English Quaker named John Dalton, whom we first encountered in the chapter on chemistry.

Dalton was born in 1766 on the edge of the Lake District near Cockermouth to a family of poor but devout Quaker weavers. (Four years later the poet William Wordsworth would also join the world at Cockermouth.) He was an exceptionally bright student-so very bright indeed that at the improbably youthful age of twelve he was put in charge of the local Quaker school. This perhaps says as much about the school as about Dalton’s precocity, but perhaps not: we know from his diaries that at about this time he was reading Newton’s Principia in the original Latin and other works of a similarly challenging nature. At fifteen, still schoolmastering, he took a job in the nearby town of Kendal, and a decade after that he moved to Manchester, scarcely stirring from there for the remaining fifty years of his life. In Manchester he became something of an intellectual whirlwind, producing books and papers on subjects ranging from meteorology to grammar. Color blindness, a condition from which he suffered, was for a long time called Daltonism because of his studies. But it was a plump book called A New System of Chemical Philosophy, published in 1808, that established his reputation.

There, in a short chapter of just five pages (out of the book’s more than nine hundred), people of learning first encountered atoms in something approaching their modern conception. Dalton’s simple insight was that at the root of all matter are exceedingly tiny, irreducible particles. “We might as well attempt to introduce a new planet into the solar system or annihilate one already in existence, as to create or destroy a particle of hydrogen,” he wrote.

Neither the idea of atoms nor the term itself was exactly new. Both had been developed by the ancient Greeks. Dalton’s contribution was to consider the relative sizes and characters of these atoms and how they fit together. He knew, for instance, that hydrogen was the lightest element, so he gave it an atomic weight of one. He believed also that water consisted of seven parts of oxygen to one of hydrogen, and so he gave oxygen an atomic weight of seven. By such means was he able to arrive at the relative weights of the known elements. He wasn’t always terribly accurate-oxygen’s atomic weight is actually sixteen, not seven-but the principle was sound and formed the basis for all of modern chemistry and much of the rest of modern science.

The work made Dalton famous-albeit in a low-key, English Quaker sort of way. In 1826, the French chemist P .J. Pelletier traveled to Manchester to meet the atomic hero. Pelletier expected to find him attached to some grand institution, so he was astounded to discover him teaching elementary arithmetic to boys in a small school on a back street. According to the scientific historian E. J. Holmyard, a confused Pelletier, upon beholding the great man, stammered:

“Est-ce que j’ai l’honneur de m’addresser a Monsieur Dalton?” for he could hardly believe his eyes that this was the chemist of European fame, teaching a boy his first four rules. “Yes,” said the matter-of-fact Quaker. “Wilt thou sit down whilst I put this lad right about his arithmetic?”

Although Dalton tried to avoid all honors, he was elected to the Royal Society against his wishes, showered with medals, and given a handsome government pension. When he died in 1844, forty thousand people viewed the coffin, and the funeral cortege stretched for two miles. His entry in the Dictionary of National Biography is one of the longest, rivaled in length only by those of Darwin and Lyell among nineteenth-century men of science.

For a century after Dalton made his proposal, it remained entirely hypothetical, and a few eminent scientists-notably the Viennese physicist Ernst Mach, for whom is named the speed of sound-doubted the existence of atoms at all. “Atoms cannot be perceived by the senses . . . they are things of thought,” he wrote. The existence of atoms was so doubtfully held in the German-speaking world in particular that it was said to have played a part in the suicide of the great theoretical physicist, and atomic enthusiast, Ludwig Boltzmann in 1906.

It was Einstein who provided the first incontrovertible evidence of atoms’ existence with his paper on Brownian motion in 1905, but this attracted little attention and in any case Einstein was soon to become consumed with his work on general relativity. So the first real hero of the atomic age, if not the first personage on the scene, was Ernest Rutherford.

Rutherford was born in 1871 in the “back blocks” of New Zealand to parents who had emigrated from Scotland to raise a little flax and a lot of children (to paraphrase Steven Weinberg). Growing up in a remote part of a remote country, he was about as far from the mainstream of science as it was possible to be, but in 1895 he won a scholarship that took him to the Cavendish Laboratory at Cambridge University, which was about to become the hottest place in the world to do physics.

Physicists are notoriously scornful of scientists from other fields. When the wife of the great Austrian physicist Wolfgang Pauli left him for a chemist, he was staggered with disbelief. “Had she taken a bullfighter I would have understood,” he remarked in wonder to a friend. “But a chemist . . .”

It was a feeling Rutherford would have understood. “All science is either physics or stamp collecting,” he once said, in a line that has been used many times since. There is a certain engaging irony therefore that when he won the Nobel Prize in 1908, it was in chemistry, not physics.

Rutherford was a lucky man-lucky to be a genius, but even luckier to live at a time when physics and chemistry were so exciting and so compatible (his own sentiments notwithstanding). Never again would they quite so comfortably overlap.

For all his success, Rutherford was not an especially brilliant man and was actually pretty terrible at mathematics. Often during lectures he would get so lost in his own equations that he would give up halfway through and tell the students to work it out for themselves. According to his longtime colleague James Chadwick, discoverer of the neutron, he wasn’t even particularly clever at experimentation. He was simply tenacious and open-minded. For brilliance he substituted shrewdness and a kind of daring. His mind, in the words of one biographer, was “always operating out towards the frontiers, as far as he could see, and that was a great deal further than most other men.” Confronted with an intractable problem, he was prepared to work at it harder and longer than most people and to be more receptive to unorthodox explanations. His greatest breakthrough came because he was prepared to spend immensely tedious hours sitting at a screen counting alpha particle scintillations, as they were known-the sort of work that would normally have been farmed out. He was one of the first to see- possibly the very first-that the power inherent in the atom could, if harnessed, make bombs powerful enough to “make this old world vanish in smoke.”

Physically he was big and booming, with a voice that made the timid shrink. Once when told that Rutherford was about to make a radio broadcast across the Atlantic, a colleague drily asked: “Why use radio?” He also had a huge amount of good-natured confidence. When someone remarked to him that he seemed always to be at the crest of a wave, he responded, “Well, after all, I made the wave, didn’t I?” C. P. Snow recalled how once in a Cambridge tailor’s he overheard Rutherford remark: “Every day I grow in girth. And in mentality.”

But both girth and fame were far ahead of him in 1895 when he fetched up at the Cavendish.[20] It was a singularly eventful period in science. In the year of his arrival in Cambridge, Wilhelm Roentgen discovered X rays at the University of Wurzburg in Germany, and the next year Henri Becquerel discovered radioactivity. And the Cavendish itself was about to embark on a long period of greatness. In 1897, J. J. Thomson and colleagues would discover the electron there, in 1911 C. T. R. Wilson would produce the first particle detector there (as we shall see), and in 1932 James Chadwick would discover the neutron there. Further still in the future, James Watson and Francis Crick would discover the structure of DNA at the Cavendish in 1953.

In the beginning Rutherford worked on radio waves, and with some distinction-he managed to transmit a crisp signal more than a mile, a very reasonable achievement for the time-but gave it up when he was persuaded by a senior colleague that radio had little future. On the whole, however, Rutherford didn’t thrive at the Cavendish.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×