After three years there, feeling he was going nowhere, he took a post at McGill University in Montreal, and there he began his long and steady rise to greatness. By the time he received his Nobel Prize (for “investigations into the disintegration of the elements, and the chemistry of radioactive substances,” according to the official citation) he had moved on to Manchester University, and it was there, in fact, that he would do his most important work in determining the structure and nature of the atom.

By the early twentieth century it was known that atoms were made of parts-Thomson’s discovery of the electron had established that-but it wasn’t known how many parts there were or how they fit together or what shape they took. Some physicists thought that atoms might be cube shaped, because cubes can be packed together so neatly without any wasted space. The more general view, however, was that an atom was more like a currant bun or a plum pudding: a dense, solid object that carried a positive charge but that was studded with negatively charged electrons, like the currants in a currant bun.

In 1910, Rutherford (assisted by his student Hans Geiger, who would later invent the radiation detector that bears his name) fired ionized helium atoms, or alpha particles, at a sheet of gold foil.[21] To Rutherford’s astonishment, some of the particles bounced back. It was as if, he said, he had fired a fifteen-inch shell at a sheet of paper and it rebounded into his lap. This was just not supposed to happen. After considerable reflection he realized there could be only one possible explanation: the particles that bounced back were striking something small and dense at the heart of the atom, while the other particles sailed through unimpeded. An atom, Rutherford realized, was mostly empty space, with a very dense nucleus at the center. This was a most gratifying discovery, but it presented one immediate problem. By all the laws of conventional physics, atoms shouldn’t therefore exist.

Let us pause for a moment and consider the structure of the atom as we know it now. Every atom is made from three kinds of elementary particles: protons, which have a positive electrical charge; electrons, which have a negative electrical charge; and neutrons, which have no charge. Protons and neutrons are packed into the nucleus, while electrons spin around outside. The number of protons is what gives an atom its chemical identity. An atom with one proton is an atom of hydrogen, one with two protons is helium, with three protons is lithium, and so on up the scale. Each time you add a proton you get a new element. (Because the number of protons in an atom is always balanced by an equal number of electrons, you will sometimes see it written that it is the number of electrons that defines an element; it comes to the same thing. The way it was explained to me is that protons give an atom its identity, electrons its personality.)

Neutrons don’t influence an atom’s identity, but they do add to its mass. The number of neutrons is generally about the same as the number of protons, but they can vary up and down slightly. Add a neutron or two and you get an isotope. The terms you hear in reference to dating techniques in archeology refer to isotopes- carbon-14, for instance, which is an atom of carbon with six protons and eight neutrons (the fourteen being the sum of the two).

Neutrons and protons occupy the atom’s nucleus. The nucleus of an atom is tiny-only one millionth of a billionth of the full volume of the atom-but fantastically dense, since it contains virtually all the atom’s mass. As Cropper has put it, if an atom were expanded to the size of a cathedral, the nucleus would be only about the size of a fly-but a fly many thousands of times heavier than the cathedral. It was this spaciousness-this resounding, unexpected roominess-that had Rutherford scratching his head in 1910.

It is still a fairly astounding notion to consider that atoms are mostly empty space, and that the solidity we experience all around us is an illusion. When two objects come together in the real world-billiard balls are most often used for illustration-they don’t actually strike each other. “Rather,” as Timothy Ferris explains, “the negatively charged fields of the two balls repel each other . . . were it not for their electrical charges they could, like galaxies, pass right through each other unscathed.” When you sit in a chair, you are not actually sitting there, but levitating above it at a height of one angstrom (a hundred millionth of a centimeter), your electrons and its electrons implacably opposed to any closer intimacy.

The picture that nearly everybody has in mind of an atom is of an electron or two flying around a nucleus, like planets orbiting a sun. This image was created in 1904, based on little more than clever guesswork, by a Japanese physicist named Hantaro Nagaoka. It is completely wrong, but durable just the same. As Isaac Asimov liked to note, it inspired generations of science fiction writers to create stories of worlds within worlds, in which atoms become tiny inhabited solar systems or our solar system turns out to be merely a mote in some much larger scheme. Even now CERN, the European Organization for Nuclear Research, uses Nagaoka’s image as a logo on its website. In fact, as physicists were soon to realize, electrons are not like orbiting planets at all, but more like the blades of a spinning fan, managing to fill every bit of space in their orbits simultaneously (but with the crucial difference that the blades of a fan only seem to be everywhere at once; electrons are).

Needless to say, very little of this was understood in 1910 or for many years afterward. Rutherford’s finding presented some large and immediate problems, not least that no electron should be able to orbit a nucleus without crashing. Conventional electrodynamic theory demanded that a flying electron should very quickly run out of energy-in only an instant or so-and spiral into the nucleus, with disastrous consequences for both. There was also the problem of how protons with their positive charges could bundle together inside the nucleus without blowing themselves and the rest of the atom apart. Clearly whatever was going on down there in the world of the very small was not governed by the laws that applied in the macro world where our expectations reside.

As physicists began to delve into this subatomic realm, they realized that it wasn’t merely different from anything we knew, but different from anything ever imagined. “Because atomic behavior is so unlike ordinary experience,” Richard Feynman once observed, “it is very difficult to get used to and it appears peculiar and mysterious to everyone, both to the novice and to the experienced physicist.” When Feynman made that comment, physicists had had half a century to adjust to the strangeness of atomic behavior. So think how it must have felt to Rutherford and his colleagues in the early 1910s when it was all brand new.

One of the people working with Rutherford was a mild and affable young Dane named Niels Bohr. In 1913, while puzzling over the structure of the atom, Bohr had an idea so exciting that he postponed his honeymoon to write what became a landmark paper. Because physicists couldn’t see anything so small as an atom, they had to try to work out its structure from how it behaved when they did things to it, as Rutherford had done by firing alpha particles at foil. Sometimes, not surprisingly, the results of these experiments were puzzling. One puzzle that had been around for a long time had to do with spectrum readings of the wavelengths of hydrogen. These produced patterns showing that hydrogen atoms emitted energy at certain wavelengths but not others. It was rather as if someone under surveillance kept turning up at particular locations but was never observed traveling between them. No one could understand why this should be.

It was while puzzling over this problem that Bohr was struck by a solution and dashed off his famous paper. Called “On the Constitutions of Atoms and Molecules,” the paper explained how electrons could keep from falling into the nucleus by suggesting that they could occupy only certain well-defined orbits. According to the new theory, an electron moving between orbits would disappear from one and reappear instantaneously in another without visiting the space between. This idea-the famous “quantum leap”-is of course utterly strange, but it was too good not to be true. It not only kept electrons from spiraling catastrophically into the nucleus; it also explained hydrogen’s bewildering wavelengths. The electrons only appeared in certain orbits because they only existed in certain orbits. It was a dazzling insight, and it won Bohr the 1922 Nobel Prize in physics, the year after Einstein received his.

Meanwhile the tireless Rutherford, now back at Cambridge as J. J. Thomson’s successor as head of the Cavendish Laboratory, came up with a model that explained why the nuclei didn’t blow up. He saw that they must be offset by some type of neutralizing particles, which he called neutrons. The idea was simple and appealing, but not easy to prove. Rutherford’s associate, James Chadwick, devoted eleven intensive years to hunting for neutrons before finally succeeding in 1932. He, too, was awarded with a Nobel Prize in physics, in 1935. As Boorse and his colleagues point out in their history of the subject, the delay in discovery was probably a very good thing as mastery of the neutron was essential to the development of the atomic bomb. (Because neutrons have no charge, they aren’t repelled by the electrical fields at the heart of an atom and thus could be fired like tiny torpedoes into an atomic nucleus, setting off the destructive process known as fission.) Had the neutron been isolated in the 1920s, they note, it is “very likely the atomic bomb would have been developed first in Europe, undoubtedly by the

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×