PART IV DANGEROUS PLANET

The history of any one part of the Earth, like the life of a soldier, consists of long periods of boredom and short periods of terror.

British geologist Derek V. Ager

13 BANG!

PEOPLE KNEW FOR a long time that there was something odd about the earth beneath Manson, Iowa. In 1912, a man drilling a well for the town water supply reported bringing up a lot of strangely deformed rock-“crystalline clast breccia with a melt matrix” and “overturned ejecta flap,” as it was later described in an official report. The water was odd too. It was almost as soft as rainwater. Naturally occurring soft water had never been found in Iowa before.

Though Manson’s strange rocks and silken waters were matters of curiosity, forty-one years would pass before a team from the University of Iowa got around to making a trip to the community, then as now a town of about two thousand people in the northwest part of the state. In 1953, after sinking a series of experimental bores, university geologists agreed that the site was indeed anomalous and attributed the deformed rocks to some ancient, unspecified volcanic action. This was in keeping with the wisdom of the day, but it was also about as wrong as a geological conclusion can get.

The trauma to Manson’s geology had come not from within the Earth, but from at least 100 million miles beyond. Sometime in the very ancient past, when Manson stood on the edge of a shallow sea, a rock about a mile and a half across, weighing ten billion tons and traveling at perhaps two hundred times the speed of sound ripped through the atmosphere and punched into the Earth with a violence and suddenness that we can scarcely imagine. Where Manson now stands became in an instant a hole three miles deep and more than twenty miles across. The limestone that elsewhere gives Iowa its hard mineralized water was obliterated and replaced by the shocked basement rocks that so puzzled the water driller in 1912.

The Manson impact was the biggest thing that has ever occurred on the mainland United States. Of any type. Ever. The crater it left behind was so colossal that if you stood on one edge you would only just be able to see the other side on a good day. It would make the Grand Canyon look quaint and trifling. Unfortunately for lovers of spectacle, 2.5 million years of passing ice sheets filled the Manson crater right to the top with rich glacial till, then graded it smooth, so that today the landscape at Manson, and for miles around, is as flat as a tabletop. Which is of course why no one has ever heard of the Manson crater.

At the library in Manson they are delighted to show you a collection of newspaper articles and a box of core samples from a 1991-92 drilling program-indeed, they positively bustle to produce them-but you have to ask to see them. Nothing permanent is on display, and nowhere in the town is there any historical marker.

To most people in Manson the biggest thing ever to happen was a tornado that rolled up Main Street in 1979, tearing apart the business district. One of the advantages of all that surrounding flatness is that you can see danger from a long way off. Virtually the whole town turned out at one end of Main Street and watched for half an hour as the tornado came toward them, hoping it would veer off, then prudently scampered when it did not. Four of them, alas, didn’t move quite fast enough and were killed. Every June now Manson has a weeklong event called Crater Days, which was dreamed up as a way of helping people forget that unhappy anniversary. It doesn’t really have anything to do with the crater. Nobody’s figured out a way to capitalize on an impact site that isn’t visible.

“Very occasionally we get people coming in and asking where they should go to see the crater and we have to tell them that there is nothing to see,” says Anna Schlapkohl, the town’s friendly librarian. “Then they go away kind of disappointed.” However, most people, including most Iowans, have never heard of the Manson crater. Even for geologists it barely rates a footnote. But for one brief period in the 1980s, Manson was the most geologically exciting place on Earth.

The story begins in the early 1950s when a bright young geologist named Eugene Shoemaker paid a visit to Meteor Crater in Arizona. Today Meteor Crater is the most famous impact site on Earth and a popular tourist attraction. In those days, however, it didn’t receive many visitors and was still often referred to as Barringer Crater, after a wealthy mining engineer named Daniel M. Barringer who had staked a claim on it in 1903. Barringer believed that the crater had been formed by a ten-million-ton meteor, heavily freighted with iron and nickel, and it was his confident expectation that he would make a fortune digging it out. Unaware that the meteor and everything in it would have been vaporized on impact, he wasted a fortune, and the next twenty-six years, cutting tunnels that yielded nothing.

By the standards of today, crater research in the early 1900s was a trifle unsophisticated, to say the least. The leading early investigator, G. K. Gilbert of Columbia University, modeled the effects of impacts by flinging marbles into pans of oatmeal. (For reasons I cannot supply, Gilbert conducted these experiments not in a laboratory at Columbia but in a hotel room.) Somehow from this Gilbert concluded that the Moon’s craters were indeed formed by impacts-in itself quite a radical notion for the time-but that the Earth’s were not. Most scientists refused to go even that far. To them, the Moon’s craters were evidence of ancient volcanoes and nothing more. The few craters that remained evident on Earth (most had been eroded away) were generally attributed to other causes or treated as fluky rarities.

By the time Shoemaker came along, a common view was that Meteor Crater had been formed by an underground steam explosion. Shoemaker knew nothing about underground steam explosions-he couldn’t: they don’t exist-but he did know all about blast zones. One of his first jobs out of college was to study explosion rings at the Yucca Flats nuclear test site in Nevada. He concluded, as Barringer had before him, that there was nothing at Meteor Crater to suggest volcanic activity, but that there were huge distributions of other stuff-anomalous fine silicas and magnetites principally-that suggested an impact from space. Intrigued, he began to study the subject in his spare time.

Working first with his colleague Eleanor Helin and later with his wife, Carolyn, and associate David Levy, Shoemaker began a systematic survey of the inner solar system. They spent one week each month at the Palomar Observatory in California looking for objects, asteroids primarily, whose trajectories carried them across Earth’s orbit.

“At the time we started, only slightly more than a dozen of these things had ever been discovered in the entire course of astronomical observation,” Shoemaker recalled some years later in a television interview. “Astronomers in the twentieth century essentially abandoned the solar system,” he added. “Their attention was turned to the stars, the galaxies.”

What Shoemaker and his colleagues found was that there was more risk out there-a great deal more-than anyone had ever imagined.

Asteroids, as most people know, are rocky objects orbiting in loose formation in a belt between Mars and Jupiter. In illustrations they are always shown as existing in a jumble, but in fact the solar system is quite a roomy place and the average asteroid actually will be about a million miles from its nearest neighbor. Nobody knows even approximately how many asteroids there are tumbling through space, but the number is thought to be probably not less than a billion. They are presumed to be planets that never quite made it, owing to the unsettling gravitational pull of Jupiter, which kept-and keeps-them from coalescing.

When asteroids were first detected in the 1800s-the very first was discovered on the first day of the century by a Sicilian named Giuseppi Piazzi-they were thought to be planets, and the first two were named Ceres and Pallas. It took some inspired deductions by the astronomer William Herschel to work out that they were nowhere near planet sized but much smaller. He called them asteroids-Latin for “starlike”-which was slightly unfortunate as they are not like stars at all. Sometimes now they are more accurately called planetoids.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×