since across the whole of nature. As the late French geneticist Jacques Monod put it, only half in jest: “Anything that is true of E. coli must be true of elephants, except more so.”

Every living thing is an elaboration on a single original plan. As humans we are mere increments-each of us a musty archive of adjustments, adaptations, modifications, and providential tinkerings stretching back 3.8 billion years. Remarkably, we are even quite closely related to fruit and vegetables. About half the chemical functions that take place in a banana are fundamentally the same as the chemical functions that take place in you.

It cannot be said too often: all life is one. That is, and I suspect will forever prove to be, the most profound true statement there is.

PART VI THE ROAD TO US

Descended from the apes! My dear, let us hope that it is not true, but if it is, let us pray that it will not become generally known.

Remark attributed to the wife of the Bishop of Worcester after Darwin's theory of evolution was explained to her

27 ICE TIME

I had a dream, which was not all a dream.

The bright sun was extinguish’d, and the stars

Did wander . . .

–Byron, “Darkness”

IN 1815 on the island of Sumbawa in Indonesia, a handsome and long-quiescent mountain named Tambora exploded spectacularly, killing a hundred thousand people with its blast and associated tsunamis. It was the biggest volcanic explosion in ten thousand years-150 times the size of Mount St. Helens, equivalent to sixty thousand Hiroshima-sized atom bombs.

News didn’t travel terribly fast in those days. In London, The Times ran a small story-actually a letter from a merchant-seven months after the event. But by this time Tambora’s effects were already being felt. Thirty-six cubic miles of smoky ash, dust, and grit had diffused through the atmosphere, obscuring the Sun’s rays and causing the Earth to cool. Sunsets were unusually but blearily colorful, an effect memorably captured by the artist J. M. W. Turner, who could not have been happier, but mostly the world existed under an oppressive, dusky pall. It was this deathly dimness that inspired the Byron lines above.

Spring never came and summer never warmed: 1816 became known as the year without summer. Crops everywhere failed to grow. In Ireland a famine and associated typhoid epidemic killed sixty-five thousand people. In New England, the year became popularly known as Eighteen Hundred and Froze to Death. Morning frosts continued until June and almost no planted seed would grow. Short of fodder, livestock died or had to be prematurely slaughtered. In every way it was a dreadful year-almost certainly the worst for farmers in modern times. Yet globally the temperature fell by only about 1.5 degrees Fahrenheit. Earth’s natural thermostat, as scientists would learn, is an exceedingly delicate instrument.

The nineteenth century was already a chilly time. For two hundred years Europe and North America in particular had experienced a Little Ice Age, as it has become known, which permitted all kinds of wintry events-frost fairs on the Thames, ice-skating races along Dutch canals-that are mostly impossible now. It was a period, in other words, when frigidity was much on people’s minds. So we may perhaps excuse nineteenth-century geologists for being slow to realize that the world they lived in was in fact balmy compared with former epochs, and that much of the land around them had been shaped by crushing glaciers and cold that would wreck even a frost fair.

They knew there was something odd about the past. The European landscape was littered with inexplicable anomalies-the bones of arctic reindeer in the warm south of France, huge rocks stranded in improbable places-and they often came up with inventive but not terribly plausible explanations. One French naturalist named de Luc, trying to explain how granite boulders had come to rest high up on the limestone flanks of the Jura Mountains, suggested that perhaps they had been shot there by compressed air in caverns, like corks out of a popgun. The term for a displaced boulder is an erratic, but in the nineteenth century the expression seemed to apply more often to the theories than to the rocks.

The great British geologist Arthur Hallam has suggested that if James Hutton, the father of geology, had visited Switzerland, he would have seen at once the significance of the carved valleys, the polished striations, the telltale strand lines where rocks had been dumped, and the other abundant clues that point to passing ice sheets. Unfortunately, Hutton was not a traveler. But even with nothing better at his disposal than secondhand accounts, Hutton rejected out of hand the idea that huge boulders had been carried three thousand feet up mountainsides by floods-all the water in the world won’t make a boulder float, he pointed out-and became one of the first to argue for widespread glaciation. Unfortunately his ideas escaped notice, and for another half century most naturalists continued to insist that the gouges on rocks could be attributed to passing carts or even the scrape of hobnailed boots.

Local peasants, uncontaminated by scientific orthodoxy, knew better, however. The naturalist Jean de Charpentier told the story of how in 1834 he was walking along a country lane with a Swiss woodcutter when they got to talking about the rocks along the roadside. The woodcutter matter-of-factly told him that the boulders had come from the Grimsel, a zone of granite some distance away. “When I asked him how he thought that these stones had reached their location, he answered without hesitation: ‘The Grimsel glacier transported them on both sides of the valley, because that glacier extended in the past as far as the town of Bern.’ ”

Charpentier was delighted. He had come to such a view himself, but when he raised the notion at scientific gatherings, it was dismissed. One of Charpentier’s closest friends was another Swiss naturalist, Louis Agassiz, who after some initial skepticism came to embrace, and eventually all but appropriate, the theory.

Agassiz had studied under Cuvier in Paris and now held the post of Professor of Natural History at the College of Neuchatel in Switzerland. Another friend of Agassiz’s, a botanist named Karl Schimper, was actually the first to coin the term ice age (in German Eiszeit), in 1837, and to propose that there was good evidence to show that ice had once lain heavily across not just the Swiss Alps, but over much of Europe, Asia, and North America. It was a radical notion. He lent Agassiz his notes-then came very much to regret it as Agassiz increasingly got the credit for what Schimper felt, with some legitimacy, was his theory. Charpentier likewise ended up a bitter enemy of his old friend. Alexander von Humboldt, yet another friend, may have had Agassiz at least partly in mind when he observed that there are three stages in scientific discovery: first, people deny that it is true; then they deny that it is important; finally they credit the wrong person.

At all events, Agassiz made the field his own. In his quest to understand the dynamics of glaciation, he went everywhere-deep into dangerous crevasses and up to the summits of the craggiest Alpine peaks, often apparently unaware that he and his team were the first to climb them. Nearly everywhere Agassiz encountered an unyielding reluctance to accept his theories. Humboldt urged him to return to his area of real expertise, fossil fish, and give up this mad obsession with ice, but Agassiz was a man possessed by an idea.

Agassiz’s theory found even less support in Britain, where most naturalists had never seen a glacier and often couldn’t grasp the crushing forces that ice in bulk exerts. “Could scratches and polish just be due to ice?” asked Roderick Murchison in a mocking tone at one meeting, evidently imagining the rocks as covered in a kind of light and glassy rime. To his dying day, he expressed the frankest incredulity at those “ice-mad” geologists who believed that glaciers could account for so much. William Hopkins, a Cambridge professor

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×