159–71; и Criteria for Scientific Choice II: The Two Cultures // Minerva 3 (Autumn 1964): 3–14.

Б52

Weinberg S. Newtonianism.

Б53

Gleick J. Chaos: Making a New Science (New York: Viking, 1987).

Б54

Выступление Дж. Глейка на Нобелевской конференции в колледже Густава Адольфа в октябре 1991.

Б55

Конечно, в любом объеме пространства имеется бесконечное количество точек, и реально невозможно привести список чисел, представляющий любую волну. Однако для наглядности (а часто и для численных расчетов) можно представлять себе пространство состоящим из очень большого, но конечного числа точек, занимающих большой, но конечный объем.

Б56

Они представляют собой комплексные числа, в том смысле, что в них содержится величина, обозначаемая буквой i и равная корню квадратному из ?1, а также обычные положительные и отрицательные числа. Та часть комплексного числа, которая пропорциональна i, называется его мнимой частью, оставшаяся называется действительной частью. Я опускаю подробности, связанные с этим усложнением, так как хотя оно само по себе важно, но не влияет на те замечания по поводу квантовой механики, которые я хотел бы сделать.

Б57

На самом деле волновой пакет электрона начинает рассыпаться даже до того, как электрон ударяется об атом. В конце концов это стало понятным благодаря тому, что в соответствии с вероятностной интерпретацией квантовой механики волновой пакет описывает электрон не с одной определенной скоростью, а с целым набором разных возможных скоростей.

Б58

Это описание может привести к ошибочному заключению, что в состоянии с определенным импульсом существует чередование точек, в которых нахождение электрона маловероятно (соответствующие значения волновой функции наименьшие), и точек, в которых электрон может находиться с большой вероятностью (соответствующие значения волновой функции максимально возможные). Это неправильно и объясняется отмеченным в предыдущем примечании фактом, что волновая функция комплексна. На самом деле у каждого значения волновой функции есть две части – действительная и мнимая и их фазы не совпадают: когда одна мала, другая велика. Вероятность того, что электрон находится в любом конкретном малом объеме, пропорциональна сумме квадратов двух частей волновой функции в данной точке пространства, и в состоянии с определенным импульсом эта сумма строго постоянна.

Б59

Bohr N. Atti del Congresso Internazionale dei Fisici, Como, Settembre 1927. Перепечатано в журнале Nature 121 (1928): 78, 580.

Б60

Строго говоря, вероятности различных конфигураций определяются суммой квадратов действительной и мнимой частей значений волновой функции.

Б61

В реальном мире частицы, естественно, не ограничены только двумя положениями, однако существуют физические системы, которые для практических целей можно рассматривать как имеющие только две конфигурации. Реальный пример такой системы с двумя состояниями – спин электрона. (Спин или момент импульса любой системы есть мера того, насколько быстро она вращается, насколько она массивна и насколько далеко от оси вращения находится масса. Принимается, что спин направлен вдоль оси вращения.) В классической механике спин гироскопа или планеты может иметь любые величину и направление. Напротив, в квантовой механике при измерении величины спина электрона относительно любого направления, например на север (обычно с помощью измерения энергии взаимодействия спина с магнитным полем в данном направлении), мы можем получить только один из двух результатов: электрон вращается вокруг этого направления либо по часовой стрелке, либо против нее, но величина спина всегда одна и та же и равна постоянной Планка, деленной на 4?.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату