Эта цитата взята из «Логико-философского трактата» Л. Витгенштейна37). Во многом в том же духе мой философски настроенный друг проф. Филип Боббитт с факультета юриспруденции Техасского университета говорил мне: «Когда я отвечаю ребенку, спросившему меня, почему яблоко падает на Землю, что “это из-за тяготения, дорогой”, я не объясняю ничего. Предлагаемые физикой математические описания физического мира не являются объяснениями…». Я согласен с этим утверждением, если все, что подразумевается под тяготением, сводится к тому, что у тяжелых предметов имеется тенденция падать на Землю. С другой стороны, если понимать под тяготением весь комплекс явлений, описанных теориями Ньютона или Эйнштейна, включая движения приливов на Земле, планет и галактик, тогда ответ, что яблоко падает из-за тяготения, безусловно выглядит для меня как объяснение. Во всяком случае, именно так используют слово «объяснение» действующие ученые.

Б19

Наиболее стабильными являются те элементы, у которых число электронов полностью заполняет одну или несколько оболочек. К таким элементам относятся благородные газы гелий (два электрона), неон (десять электронов), аргон (восемнадцать электронов) и т.д. (Эти газы называются благородными, так как вследствие стабильности их атомов эти газы не участвуют в химических реакциях.) У кальция двадцать электронов, так что два из них находятся вне заполненных оболочек аргона, и они могут быть легко потеряны. Кислород имеет восемь электронов, так что не хватает как раз двух для того, чтобы заполнить оболочки неона, так что кислород охотно подбирает два электрона, чтобы заполнить дырки в своих оболочках. Углерод имеет шесть электронов, так что его можно рассматривать либо как гелий с четырьмя лишними электронами, либо как неон с четырьмя недостающими электронами, и поэтому углерод может как терять, так и приобретать четыре электрона. (Такая амбивалентность позволяет атомам углерода очень сильно связываться друг с другом, например, как в алмазе.)

Б20

Если атом обладает положительным или отрицательным электрическим зарядом, то он стремится захватывать или терять электроны до тех пор, пока не станет нейтральным.

Б21

Anderson P. // Science 177 (1972): 393.

Б22

Чтобы определить энтропию, представьте, что температура некоторой системы очень медленно увеличивается от абсолютного нуля. Увеличение энтропии системы при получении каждой последующей маленькой порции тепловой энергии равно этой энергии, деленной на ту абсолютную температуру, при которой тепловая энергия передается.

Б23

Важно заметить, что в системе, обменивающейся энергией с окружающей средой, энтропия может уменьшаться. Возникновение жизни на Земле связано с уменьшением энтропии, и это разрешено термодинамикой, поскольку Земля получает энергию от Солнца и отдает энергию в окружающее пространство.

Б24

Nagel E. The Structure of Science, pp. 338–45.

Б25

История этой битвы излагается в книге: Brush S. The Kind of Motion We Call Heat (Amsterdam: North-Holland, 1976), особенно в разделе 1.9 книги 1.

Б26

Термодинамика применима к черным дырам не потому, что внутри них находится большое число атомов, а потому, что черные дыры содержат большое число определяемых квантовой теорией гравитации фундаментальных единиц массы, каждая из которых равна 10?5 г и называется массой Планка. Если бы черная дыра имела массу меньше 10?5 г, термодинамика к ней была бы неприменима.

Б27

Hoffman R. Under the Surface of the Chemical Article // Angewandte Chemie 27 (1988): 1597–1602.

Б28

Primas H. Chemistry, Quantum Mechanics, and Reductionism, 2nd ed. (Berlin: Springer-Verlag, 1983).

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату