называемому 'силиконовому компилятору'. Имея спецификацию на функцию чипа, эти системы программ могут производить детализированную разработку схемы, готовой для производства, с небольшой или вообще без человеческой помощи.
Все эти системы основываются целиком на человеческом знании, тщательно собранном и закодированном. Наиболее гибкие автоматизированные системы проектирования сегодня могут варьировать предложенный проект для поиска усовершенствований, но они не узнают ничего применимого к следующему проекту. Но EURISKO отличается. Разработанная профессором Дугласом Ленатом и другими в Стэндфордском университете, EURISKO предназначена для исследования новых областей знания. Она управляется эвристиками – кусочками знания, которые подсказывают возможные действия, которым можно следовать, или те, которые нужно избегать; по сути, различные 'правила большого пальца'. Она использует эвристики, чтобы подсказывать темы, над которыми нужно работать, и другие эвристики, чтобы подсказывать, какие подходы попробовать и как оценить результаты. Ещё одни эвристики ищут устойчивые структуры в результатах, предлагая новые эвристики, и ранжируют ценность и новых, и старых эвристик. Таким образом EURISKO вырабатывает лучшее поведение, лучшие внутренние модели, и лучшие правила выбора между внутренними моделями. Сам Ленат описывает вариацию и отбор эвристик и принципов в системе терминов 'мутация' и 'селекция', и подсказывает социальные, культурные метафоры для понимания их взаимодействия.
Поскольку в EURISKO эвристики эволюционируют и конкурируют, имеет смысл ожидать, что появятся паразиты – как действительно многие появляются. Одна произведенная машиной эвристика, например, повысилась до самой высокой возможной оценки ценности, заявляя, что она помогла открыть каждую ценную новую догадку. Профессор Ленат работал близко с EURISKO, улучшая её умственную иммунную систему, давая ей эвристики для отсеивания паразитов и избежания глупых линий рассуждения.
EURISKO использовалась для исследования элементарной математики, программирования, биологической эволюции, игр, трехмерной конструкции интегральных схем, сбора нефтяных пятен, слесарного дела, и, конечно, самих эвристик. В некоторых областях она поразила своих проектировщиков новыми идеями, включая новые электронные устройства в возникающей технологии 3-мерных интегральных схем.
Результаты турнира иллюстрируют мощь команды, состоящей из людей и машин с ИИ. Traveller TCS – футуристическая игра в войну на море, включающая две сотни страниц правил, которые определяют конструкцию, стоимость и ограничения возможностей для флота ('TCS' расшифровывается как Trillion Credit Squadron – 'Эскадра, стоящая триллион'). Профессор Ленат дал EURISKO эти правила, набор стартовых эвристик и программу для моделирования битвы между двумя флотами. Он сообщает, что 'затем она разрабатывала флот за флотом, используя симулятор как механизм 'естественного отбора' по мере того, как она разрабатывала всё лучшие и лучшие проекты флота.' Программа работала всю ночь, разрабатывая, тестируя и извлекая уроки из результатов. Утром Ленат отбраковал плохие проекты и помог их улучшить. Он приписывает около 60 процентов результатов себе и около 40 процентов – EURISKO.
Ленат и EURISKO вступили в национальный турнир 1981 года по игре Traveller TCS турнир со флотом, выглядящим странно. Другие соперники над ним смеялись, но затем ему проиграли. Флот Ленат/EURISKO выиграл все раунды, став как национальным чемпионом. Как Ленат замечает, ''Эта победа делается более значительной тем фактом, что никто, кто делал эту программу никогда не играл в эту игру до турнира, не видел, как в неё играют, и не было ни одного тренировочного раунда.'
В 1982 спонсоры соревнования изменили правила. Ленат и EURISKO пришли с очень отличающимся от предыдущего флотом. Другие соперники снова смеялись над ним, но затем проиграли. Ленат и EURISKO снова выиграли национальное первенство.
В 1983 спонсоры соревнования сказали Ленату, что, если он вступит и победит снова, соревнование будет отменено. Ленат откланялся.
EURISKO и другие программы ИИ показывают, что компьютеры обязаны ограничиваться скучной, повторяющейся работой, если им дают правильный вид программирования. Они могут исследовать возможности и открывать новые идеи, которые удивляют их создателей. EURISKO имеет недостатки, однако она указывает путь к чему-то вроде партнёрства, в котором и система ИИ, и человек-эксперт вкладывают знание и творчество в процесс разработки.
В следующие годы, подобные системы преобразят инжиниринг. Разработчики будут работать в творческом партнёрстве со своими машинами, используя программное обеспечение, выросшее из сегодняшних автоматизированных систем проектирования для выполнения моделирования, и используя эволюционирующие, EURISKO-подобные системы для генерации предложений, какие конструкции моделировать. Инженеры будут сидеть у экрана, чтобы вводить цели для процесса разработки и рисовать эскизы предлагаемых конструкций. Система будет отвечать тем, что детализировать конструкцию, тестировать её и отображать предлагаемые альтернативы с объяснениями, графиками и диаграммами. Потом инженер будет вносить дальнейшие предложения и изменения, или давать новое задание, до тех пор, пока вся система оборудования не будет разработана и смоделирована.
По мере того, как автоматизированные технические системы будут улучшаться, они будут делать все больше работы всё быстрее и быстрее. Все более часто, инженер просто предложит цели и затем выберет одно из хороших решений, предложенных машиной. Всё менее и менее часто инженеру придётся выбирать части, материалы и конфигурацию. Постепенно инженеры будут способны ставить более общие цели и ожидать хороших решений как само собой разумеющееся. Также, как EURISKO работал в течение часов, разрабатывая флоты для симулятора Traveller TCS, автоматизированные системы проектирования будут в один прекрасный день усердно работать над разработкой пассажирских реактивных самолётов, имеющих максимум безопасности и экономичности, или над разработкой военных самолётов и ракет, способных наилучшим образом контролировать воздушное пространство.
Также, как EURISKO изобрел электронные устройства, автоматизированные системы проектирования будущего будут изобретать молекулярные машины и молекулярные электронные устройства, с помощью программ для молекулярного моделирования. Такие успехи в автоматизированной разработке усилят явление проектирования вперёд, описанное ранее. Таким образом автоматизированная разработка не только ускорит ассемблерную революцию, она ускорит прыжок, который за ней последует.
В конечном счете системы программного обеспечения будут способны создавать смелые новые проекты без человеческой помощи. Будет ли большинство людей называть такие интеллектуальные системы? Это действительно не имеет значения.
Компании и правительства во всем мире поддерживают разработку ИИ, потому что он сулит коммерческие и военные преимущества. В Соединенных Штатах имеется много университетских лабораторий искусственного интеллекта и большое количество новых компаний с названиями, подобными такими как Machine Intelligence Corporation (корпорация 'Машинный интеллект'), Thinking Machines Corporation (корпорация 'Думающие машины'), Teknowledge ('Технознание') и Cognitive Systems Incorporated (корпорация 'Познающие системы'). В октябре 1981 года министерство торговли и промышленности Японии объявило десятилетнюю программу на 850 миллионов долларов по разработке передовых аппаратных и программных средств искусственного интеллекта. С этой программой исследователи планируют разработать системы, способные выполнять миллиард логических выводов в секунду. Осенью 1984 года Московская Академия Наук объявила аналогичную 5-летнюю программу на 100 миллионов долларов. В октябре 1983 года департамент обороны США объявил 5-летнюю Программу по стратегическим вычислениям; они пытаются сделать машины, способные видеть, рассуждать, понимать речь и помогать управлять сражениями. Как сообщает Пол Валич в IEEE Spectrum, 'Искусственный интеллект рассматривается большинством людей как краеугольный камень следующего поколения компьютерной технологии; все усилия в разных странах дают ему выдающееся место в своём списке целей.'
Продвинутый ИИ появится шаг за шагом, и каждый шаг окупится знанием и возросшими способностями. Также как с молекулярной технологией (и многими другими технологиями), попытки остановить прогресс в одном городе, округе или стране самое большее – даст другим перехватить