инициативу. Чудесный успех на ниве повсеместной остановки видимых работ над ИИ самое большее замедлил бы его появление и, по мере того как компьютеры становятся дешевле, позволил бы ему вызревать тайно, без ведома общества. Только единое во всём мире государство с огромной властью и стабильностью могло бы действительно остановить исследования по ИИ повсеместно и навсегда – решение неимоверной опасности, в свете прошлых злоупотреблений всего лишь государственной властью. Продвинутый ИИ, по-видимому, неизбежен. Если мы надеемся сформировать реалистичный взгляд на будущее, мы не можем это игнорировать.

В некотором смысле, искусственный интеллект будет окончательный инструмент, потому что он будет помогать нам строить любые другие возможные инструменты. Продвинутые ИИ системы могли бы прекратить существование людей, или они могли бы помочь нам построить новый и лучший мир. Агрессоры могли бы использовать их для завоевания, а прозорливые защитники могли бы использовать их, чтобы мир стабилизировать. Они могли бы даже помочь нам управлять самим ИИ. Рука, которая качает колыбель ИИ, вполне может начать управлять миром.

Как и с ассемблерами, нам будет нужно предвидение и тщательная выработка стратегии для использования этой новой технологии безопасно и во благо. Нерешённые проблемы сложны и взаимосвязаны со всем, от деталей молекулярной технологии до занятости и экономики, до философского обоснования, что есть человеческие права. Наиболее основные вопросы, тем не менее, включают то, что ИИ может делать.

Достаточно ли мы умные?

Несмотря на пример эволюции людей, критики всё же могут доказывать, что наш ограниченный интеллект может некоторым образом препятствовать тому, чтобы мы смогли создать программы для по- настоящему интеллектуальных машин. Этот аргумент кажется слабым, сводясь немного более чем к заявлению, что поскольку критики не видят, как достичь успеха, значит вряд ли кто-нибудь когда-нибудь увидит. Однако мало кто отрицал бы, что программирование компьютеров для их соответствия человеческим способностям действительно потребует свежих идей в понимании человеческой психологии. Хотя путь к программированию ИИ кажется открытым, наши знания не соответствуют той основательной уверенности, которую имели вдумчивые инженеры (за десятилетия до первого спутника) в том, что можно достичь луны с помощью ракет, или которая у нас сегодня есть в том, что можно построить ассемблеры с помощью проектирования белка. Программирование настоящего искусственного интеллекта, хотя это и форма инжиниринга, потребует новой науки. Это ставит ИИ вне возможности надёжных прогнозов.

Тем не менее нам нужно точное предвидение. Похоже, что люди, цепляющиеся за успокоительные сомнения относительно ИИ, страдают принципиально ошибочными образами будущего. К счастью, автоматизированная разработка спасает некоторых от бремени биошовинистского предрассудка. Большинство людей меньше расстроено идеей о машинах, разрабатывающих машины, чем идеей об истинных системах ИИ общего назначения. Кроме того, уже доказано, что автоматизированная разработка работает; то, что остается сделать – это расширить её. Однако, если вероятно, что возникнут более общие системы, было бы глупо выпустить их из наших расчётов. Имеется ли способ обойти вопрос, способны ли мы разработать интеллектуальные программы?

В 1950-ых, многие исследователи ИИ сосредотачивались на моделировании мозговых функций, моделируя нейроны. Но исследователи, работающие на программах, основанных на словах и символах сделали более быстрый прогресс, и фокус работ по ИИ соответственно переместился. Тем не менее, базовая идея нейронного моделирования остаётся правильной, а молекулярная технология сделает её более практической. Что более важно, этот подход, по-видимому, гарантирует, что будет работоспособен, потому что он не требует никаких новых фундаментальных открытий в области природы мысли.

В конечном счете, нейробиологи будут использовать молекулярные машины размера с вирус для изучения структуры и функционирования мозга, клетка за клеткой и молекула за молекулой, где это необходимо. Хотя исследователи ИИ могут получать новое полезное понимание организации мысли из успехов науки о мозге, которые появятся как результат молекулярной технологии, нейронное моделирование может преуспеть и без такого понимания. Компиляторы переводят программы компьютера от одного языка до другого без понимания, как они работают. Фотокопировальные устройства отображают рисунки из слов, не читая их. Аналогичным образом, исследователи будут способны скопировать структуры нейронов в мозгу на другой носитель не понимая их высокоуровневой организации.

После изучения, как нейроны работают, инженеры будут способны разрабатывать и строить аналогичные устройства, базой которых будет продвинутая наноэлектроника и наномашины. Они будут взаимодействовать подобно нейронам, но работать быстрее. Нейроны, хотя и сложны, но кажутся достаточно простыми для понимания разумом, и чтобы инженеры смогли сделать имитацию. Действительно, нейробиологи узнали многое о их структуре и функции, даже без машин молекулярного масштаба, с помощью которых бы можно было исследовать их объекты изучения.

С этим знанием, инженеры будут способны строить быстрые системы ИИ с большими возможностями, даже без понимания мозга и умного программирования. Им нужно только изучить нейронную структуру мозга и соединить искусственные нейроны так, чтобы образовалась та же самая функциональная структура. Если они делают все части правильно, включая то, как они соединяют части, чтобы образовать целое, то целое также окажется каким надо. 'Нейронная' деятельность будет течь в структурах, которые мы называем мыслью, но быстрее, потому что все части будут работать быстрее.

Ускорение гонки технологий

Системы продвинутого ИИ кажутся возможными и неизбежными, но что будет в результате их появления? Никто не может ответить на это полностью, что это полностью, но одно следствие автоматизированной разработки очевидно: она ускорит наше продвижение к пределам возможного.

Чтобы понять наши перспективы, нам нужно некоторое представление о том, насколько быстро продвинутые системы ИИ будут думать. Современные компьютеры имеют только крошечную долю сложности мозга, и все же на них уже могут работать программы, имитирующие существенные аспекты человеческого поведения. Они совершенно отличаются от мозга по своему принципу действия, хотя такое прямое физическое сравнение почти бесполезно. Мозг делает огромное количество вещей одновременно, но довольно медленно; большинство современных компьютеров делают за раз только одно, но с умопомрачительной скоростью.

Однако, можно представить себе аппаратные средства ИИ, построенные, чтобы подражать мозгу не только в функции, но и в структуре. Это могло бы следовать из подхода нейронного моделирования, или из развития программ ИИ, чтобы они могли работать на аппаратных средствах со стилем организации, подобным тому, который существует в мозгу. Так или иначе мы можем использовать аналогии с человеческим мозгом, чтобы оценить минимальную скорость для продвинутых систем ИИ, построенных с помощью ассемблеров.

Синапсы нейронов реагируют на сигналы за тысячные доли секунды; экспериментальные электронные переключатели реагируют в сто миллионов раз быстрее (а наноэлектронные переключатели будут ещё быстрее). Нейронные сигналы движутся со скоростью сто метров в секунду; электронные – в миллион раз быстрее. Это грубое сравнение скоростей даёт представление, что электронные устройства, подобные мозгу будут работать примерно в миллион раз быстрее чем мозг, состоящий из нейронов (со скоростью, ограниченной скоростью электронных сигналов).

Это, конечно, грубая оценка. Синапс нейрона сложнее переключателя; он может изменять реакцию на сигналы, изменяя структуру. При прошествии какого-то времени могут даже появляться новые синапсы и исчезать старые. Эти изменения в волокнах и связях мозга являются материальной основой долговременных изменений ума, которые мы называем обучением. Они подтолкнули профессора Роберта Джастроу из Дартмауса описать мозг как заколдованный станок, ткущий, распускающий и ткущий заново свои нейронные структуры на протяжении всей жизни.

Чтобы представить себе подобное мозгу устройство с сопоставимой гибкостью, изобразите его электронные схемы как окруженные механическими нанокомпьютерами и ассемблерами, с 'переключателями', по одному на эквивалент синапса. Также, как молекулярные машины синапса отвечают на схемы нейронной активности изменяя структуру синапса, также нанокомпьютеры будут реагировать на схемы активности давая команду наномашинам изменить структуру переключателей. С правильным программированием и с коммуникациями между нанокомпьютерами для моделирования химических

Вы читаете Машины создания
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату