мобильность в телефонных услугах. Компании уже предпринимают усилия, чтобы извлечь преимущество нулевой гравитации для выполнения тонких процессов сепарации, чтобы делать улучшенные фармацевтические препараты; другие компании планируют выращивать улучшенные электронные кристаллы. За годы до того как ассемблеры вступят в производство материалов, инженеры будут использовать космическую среду, чтобы расширить возможности балк-технологии. Космическая промышленность будет обеспечивать растущий рынок для услуг запуска кораблей, снижая издержки по запуску. Падение издержек по запуску в свою очередь будет стимулировать рост космической промышленности. Ракетный транспорт на земную орбиту наконец станет экономически оправданным.
Космические проектировщики и предприниматели уже смотрят далее земной орбиты на ресурсы солнечной системы. Однако в дальнем космосе ракеты быстро станут слишком дорогим средством транспортировки – они будут сжирать топливо, которое само должно было транспортироваться ракетой в космос. Ракеты на сжигаемом топливе стары как китайские фейерверки, намного старше 'флага, усыпанного звёздочками'. Они развились по естественным причинам: компактные, мощные и полезные для военных, они могут пробиваться сквозь воздух и противодействовать сильной гравитации. Однако космическим инженерам известны альтернативы.
Транспортным средствам не требуется огромных взрывов энергии, чтобы двигаться через свободный от трения вакуум космоса. Маленькие силы могут медленно и устойчиво разгонять транспортное средство до огромных скоростей. Поскольку энергия имеет массу, солнечный свет, попадающий в тонкое зеркало – солнечный парус, обеспечивает такую силу. Притяжение гравитации Солнца обеспечивает другую силу. Вместе давление света и гравитация могут носить космические корабли в любое место Солнечной системы и обратно. Только жар вблизи Солнца и сопротивление атмосфер планет будут ограничивать путешествия, заставляя паруса избегать эти места.
НАСА изучило солнечные паруса, разработанные, чтобы их везти в космос в ракетах, но они должны быть довольно тяжелы и прочны, чтобы выдержать нагрузку запуска и разворачивания. В конце концов инженеры будут изготавливать паруса в космосе, используя структуры с высоким отношением прочности к массе для поддержки зеркал из тонкой металлической плёнки. Результатом будет 'световой парус', высокоэффективный тип солнечного паруса. После ускорения в течение года световой парус может достичь скорости сто километров в секунду, оставляя самые быстрые сегодняшние ракеты далеко позади.
Если вы вообразите сеть графито-волокных нитей, сплетаемую паучью сеть шириной в километры, с промежутками между нитями размером с футбольное поле, вы будете на правильном пути, чтобы представить себе структуру светового паруса. Если вы изобразите промежутки, соединенные тонкими светоотражающими плоскостями из алюминиевой фольги тоньше чем мыльный пузырь, вы будете иметь неплохое представление, как он выглядит: большое количество отражающих поверхностей, прочно связанных друг с другом и образующих обширную слегка колеблющуюся мозаику зеркал. Теперь изобразите груз, висящий на сети как парашютист с парашюта, в то время как центробежные силы держат подвешенные на сети зеркала натянутыми и плоскими в вакууме, и вы получите почти достоверную картину.
Чтобы построить световой парус с помощью балк-технологии, мы должны научиться делать их в космосе; их обширные отражатели будут слишком тонки, чтобы пережить запуск корабля в космос и разворачивание. Нам придётся строить структур каркаса, производить тонкую плёнку отражателей, и использовать удалённо управляемые манипуляторы в космосе. Но проектировщики космических программ уже намереваются овладеть созданием конструкций, производством и робототехникой для других космических приложений. Если мы построим световой парус в начале космического развития, в этом начинании будут использоваться эти умения и при этом не будет требоваться запуск в космос большого количества материала. Хотя каркас и будет занимать огромную площадь, он (вместе с материалами для большого количества парусов) будет достаточно лёгок, чтобы вывести его на орбиту за один или два полёта космического челнока.
Средства производства паруса произведут паруса дешево. Паруса, если их один раз построить, использовать будет дёшево: у них будет немного критических движущихся частей, небольшая масса, и нулевое потребление топлива. Они будут крайне сильно отличаться от ракет по форме, функции и стоимости эксплуатации. На самом деле вычисления подсказывают, что издержки будут отличаться в пользу световых парусов приблизительно в тысячу раз.
Сегодня большая часть людей рассматривает остальную часть солнечной системы как огромную и недоступную. Она и правда обширна; также как и Земле, будут требоваться месяцы, чтобы сплавать с парусом туда и обратно. Однако её очевидная недоступность меньше относится к расстоянию, чем к стоимости перемещения с помощью ракет.
Световые паруса смогут преодолеть барьер стоимости, открывая дверь в Солнечную систему. Световые паруса будет делать другие планеты более достижимыми, но это не сделает планеты намного более полезными: они останутся смертоносными пустынями. Гравитация планет будет препятствовать световым парусам спускаться на их поверхность и будет препятствовать развитию промышленности на их поверхности. Вращающиеся космические станции могут имитировать гравитацию, если это необходимо, но привязанная к планете станция избежать её не способна. Что ещё хуже, атмосферы планет блокируют солнечную энергию, распространяют пыль, подвергают металл коррозии, нагревают холодильники, охлаждают печи и сдувают все вещи. Даже безвоздушный Марс вращается, создавая препятствие для солнечного света в течение половины времени, и имеет достаточно гравитации, чтобы почти полностью задерживать солнечный свет. Световые паруса быстры и могут работать без устали, но не прочны.
Огромная и непреходящая ценность космоса находится в его запасах вещества, энергии и пространства. Планеты занимают место и задерживают энергию. Материальные ресурсы, которые они располагают, размещены неудобно. Астероиды, напротив, – это летающие горы ресурсов, которые имеют орбиты, проходящие через всю солнечную систему. Некоторые пересекаются с орбитой Земли; некоторые даже столкнулись с Землей, оставив на ней кратеры. Разработка астероидов на полезные ископаемые выглядит реальной. Нам могут понадобиться ревущие ракеты, чтобы выводить что-то в космос, но метеориты доказывают, что целые горы могут сваливаться из космоса, и, подобно космическим челнокам, объекты, падающие из космоса, не обязательно сгорают по пути вниз. Отправка посылок с материалами с астероидов на Землю с приземлением на соляных отмелях будет стоить немного.
Даже маленькие астероиды велики в человеческих понятиях: они содержат миллиарды тонн ресурсов. Некоторые астероиды содержат воду и вещество, похожее на нефтяной сланец. Некоторые состоят просто из обычного камня. Некоторые содержат металл, содержащий редкоземельные элементы, элементы, которые погрузились так глубоко, что их трудно достать, очень давно, в период формирования металлического ядра Земли: эта сталь из метеоритов – прочный, стойкий сплав железа, никеля и кобальта, обладает значительным содержанием металлов платиновой группы и золота. Кусок шириной в километр этого материала (а их много), содержит драгоценных металлов стоимостью на несколько триллионов долларов, вперемешку с таким количеством никеля и кобальта, чтобы обеспечить земную промышленность на много лет.
Солнце заливает космос легко собираемой энергией. Каркас размером в квадратный километр, содержащий отражатели из металлической плёнки, соберет более чем миллиард ватт солнечного света, там нет ни облаков, ни ночи. В невозмутимости космоса, где не бывает погодных явлений, тончайший коллектор будет прочен как дамба гидроэлектростанции. Так как Солнце выделяет столько же энергии за микросекунду, сколько всё человечество сейчас использует за год, энергия ещё на протяжении некоторого времени не будет ограниченным ресурсом.
Наконец, сам космос предлагает пространство для жизни. Когда-то люди понимали жизнь в космосе как жизнь на планетах. Они воображали куполообразные города, построенные на планетах, мертвые планеты, медленно преобразуемые в планеты, подобные Земле, и планеты, похожие на Землю, до которых долетают за годы звёздных полётов. Но планета – это как покупка комплекта товаров – обычно они предлагают не ту гравитацию, атмосферу, продолжительность дня и местоположение.
Свободное космическое пространство предлагает лучшее место для строительства. Профессор Джерард О'Нейлл Принсетонского университета привлёк к этой идеи общественное внимание, помогая восстановить интерес к космосу после неудачи с Аполлоном. Он показал, что обычные строительные материалы – сталь и стекло, могли бы использоваться для строительства обитаемых цилиндров в космосе,