b и с.

В. То же для планеты с периодом 241 сутки. Вычтены составляющие b u d . (Из работы Батлера и др., 1999 г.)

ПЛАНЕТНАЯ СИСТЕМА ?And И ДРУГИЕ

Поначалу удавалось обнаружить лишь одиночные планеты. Первой системой с несколькими планетами стала ипсилон Андромеды (?And). Первую из ее планет, ?And b, обнаружила группа Дж. Марси в 1996 году. Они заметили, что на кеплеровскую составляющую (около 70 м/с) наложена еще одна искаженная синусоида, с периодом 4,6 суток, которая постоянно обнаруживалась в наблюдениях. Это указывало на присутствие еще одной планеты, ?And c с массой Msini = 0,68 Мю (массы Юпитера) на низкой орбите. Оказалось, что лучевая скорость звезды ?And за длительное время увеличивается примерно на 100 м/с, а затем на столько же уменьшается. После нескольких лет наблюдений стала видна другая правильная составляющая с периодом около 3,5 года. Отличие ее формы от синусоидальной указывает на большой эксцентриситет орбиты экзопланеты. Но после исключения составляющих с периодами 4,617 и 1308 суток остающийся разброс данных все еще примерно вдвое превышал ожидаемые ошибки. Поиск других скрытых планет вскоре позволил выявить еще один период, 241 сутки, также с большим эксцентриситетом. Массы планет, с точностью до sini, равны 0,68, 2,05 и 4,29 Мю, а большие полуоси (радиус орбиты) 0,059, 0,828 и 2,09 а. е. В Солнечной системе подобное распределение начинается с орбиты Венеры и кончается внутренней границей пояса астероидов. Поэтому систему ?And можно было бы считать похожей на Солнечную, если бы у планет ?And c и d не была так велика вытянутость (эксцентриситет) орбит – 0,24 и 0,31 соответственно.

Число систем, у которых обнаружено несколько планет, постоянно возрастает и в 2006 году достигло 19. Система коричневого карлика GJ 876 имеет две планеты (причем с орбитальным резонансом 2:1), ипсилон Andromedae – три планеты, 55 Cancri – четыре, причем одна из них имеет массу, близкую к массе Нептуна (около 17 масс Земли).

Массы известных внесолнечных планет лежат в пределах от примерно 0,055 до более чем 10 Мю. Свойства метода лучевых скоростей (МЛС) таковы, что во всех найденных планетных системах легче всего обнаружить весьма массивные объекты, с массами в несколько масс Юпитера, причем на низких орбитах (с коротким периодом). Лишь в последние годы техника МЛС приблизилась к порогу кеплеровских скоростей 1 м/с, благодаря чему в 2004 году были обнаружены две экзопланеты с массами около 5% массы Юпитера. Такой результат возможен только для звезд с исключительно спокойной фотосферой.

Уже в первые годы исследований было установлено, что экзопланеты делятся на две большие группы по орбитальным признакам: 'горячие юпитеры' на низких круговых орбитах с радиусом орбиты менее 0,15 а. е. и периодом менее 10 суток и более массивные (главным образом) объекты на высоких орбитах с периодом меньше 10 лет. Орбиты дальних планет образуют эллипс, вытянутость которого принято характеризовать эксцентриситетом. Он оказался неожиданно большим или даже очень большим, вплоть до 0,9, что больше подходит для комет, а не для планет. Удалось установить, что планеты на низких круговых орбитах имеют сравнительно узкие пределы масс, в среднем 0,6-0,7 масс Юпитера, а тела на высоких эксцентрических орбитах различаются по массам очень значительно. Условная граница между круговыми короткопериоди ческими (несколько суток) и преимущественно эксцентрическими орбитами с периодом более 30 суток находится на расстоянии 0,15-0,16 а. е. от родительской звезды.

Распределение орбит внесолнечных планет и минимальные оценки их масс. Положение планет в кратных системах за пределами поля рисунка показано значением большой полуоси орбиты (например, вторая планета системы HD 74156 имеет большую полуось орбиты 3,47 а.е.). (Из работы Кестлер, 2003 г.)

Объект HD 141569. Центральная часть снимка закрыта, но края зоны хорошо видны. (Снимок Б. Смита и его коллег, наблюдения на HST , 1999 г.). Наблюдения газово-пылевых дисков неизменно показывают окружающую звезду обширную центральную зону, свободную от пыли и газа.

МИГРАЦИЯ И ЭКСЦЕНТРИСИТЕТЫ ОРБИТ

Причина своеобразного 'выбора' масс планет, которые обращаются по низким круговым орбитам, лежит, по-видимому, в механизме миграции, медленного сползания планет с высоких орбит, где они образовались, на низкие, околозвездные. Явление миграции предсказывали некоторые теоретические работы, но так как в Солнечной системе все крупные планеты всегда остаются на своих орбитах и никуда не сползают, теории миграции особого значения не придавали. Но теперь миграция, направленная к центральной звезде, с орбит, находящихся в зоне формирования планет-гигантов (на расстоянии 4-5 а. е.), остается единственным логичным объяснением происхождения низкоорбитальных планет, потому что здесь им просто не из чего возникнуть. Астрономы уже обнаружили несколько десятков гигантских газово- пылевых дисков в стадии формирования планет. Обширная зона вокруг звезды, радиусом до нескольких десятков а. е., свободная от пыли и газа, в них присутствует неизменно. Плотность излучения звезды здесь настолько высока, что пылевые частицы испаряются и улетают на периферию. Поэтому ответ на первый возникающий вопрос: где находится тот материал, из которого сформировались низкоорбитальные планеты? – мог быть только один: на расстоянии орбиты Юпитера (5 а. е.). Согласно теории, миграция возникает на ранней стадии формирования звезды и планетной системы и происходит достаточно быстро. Внесолнечные планеты предлагают теоретикам столько вопросов, что впору всю теорию образования

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату