цилиндре, от всех жителей города;

Р(b) – доля тех, кто ходит с тросточкой, от всех жителей города;

Р(c) – доля тех, кто пьет только абсент, от всех жителей города.

Получение всей этой информации требует некоторого статистического обследования жителей города и их привычек. Результаты такого обследования могут быть сведены в таблицу сопряженности (табл. 5).

Таблица 5

В этой таблице z3, например, доля жителей торода, которые ходят в цилиндре и с тросточкой, но не пьют абсента. Аналогичным образом интерпретируются и остальные ее элементы. Значения z1, удовлетворяют ряду соотношений.

1. z1+z2+z3+z4+z5 +z6+z7+z8=1.

Это соотношение вытекает из нормировки, так как zi – доли.

2. Восемь ограничений вида zi?0, вытекающие из смысла zi, i=1,2,…,8.

3. Предположим, что в городе множества жителей, которые носят цилиндр, ходят с тросточкой и пьют только абсент, не являются пустыми. Это означает, что должны выполняться следующие неравенства:

Значение ? выбрано так, чтобы все эти три неравенства были справедливы.

4. Еще два неравенства связаны с тем, что величины Р (b/а) и Р (c/b), входящие в посылку силлогизма бабушки, должны удовлетворять ограничениям P (b/a)?? и P (c/b)??, где ? подобрано таким образом, чтобы оба неравенства выполнялись. Если условные частоты выразить через элементы таблицы сопряженности, то можно получить еще два неравенства:

В этих ограничениях два параметра: ? и ?. Варьируя их, можно вводить различные нечеткие квантификаторы в силлогизм типа силлогизма бабушки или силлогизма Сумбурука.

Дадим некоторые необходимые пояснения к приведенной системе. Посылки силлогизма бабушки, как его сформулировал бармен, звучат так: «Из тех, кто носит цилиндр, почти все ходят с тросточкой» И «Из тех, кто ходит с тросточкой, почти все пьют только абсент». Заглавная буква И отделяет один член посылки от другого. Первый член посылки говорит о том, что P (b/a) есть нечеткий квантификатор «почти все», а второй член посылки содержит аналогичное утверждение относительно P (c/b). Если считать, что нечеткому квантификатору «почти все» на лингвистической шкале соответствует некоторый отрезок, то он имеет вид [?,1], где ?>0. Именно в этом смысл двух последних неравенств. В силлогизме бабушки дается оценка нечеткого квантификатора, соответствующего Р(с/а). Бабушка считает, что Р(с/а) соответствует квантификатор «многие». Сумбурук же считает, что Р (с/а) соответствует квантификатор «почти все». Значит, бабушка предполагает, что Р(с/а) на лингвистической шкале соответствует полуинтервал [?,?] и ?>0, а Сумбурук уверен, что это отрезок [?,1]. В этом и состоит их несогласие.

Их спор происходит в условиях некоторого «контекста». Этот контекст определяется величинами Р(а), Р(b) и Р(с), характерными для данного городка. В наших ограничениях контекст определяется параметром ?.

Силлогизмы бабушки и Сумбурука – это формальный вывод вида АВ. Здесь А – посылка силлогизма, общая для бабушки и Сумбурука, а В – заключение, которое у бабушки имеет вид «Р(с/а) есть нечеткий квантификатор «многие»», а у Сумбурука – вид «Р/(c/a) есть нечеткий квантификатор «почти все»». Вывод: силлогизм происходит в условиях контекстных ограничений, характеризуемых параметром ?.

Как разрешить спор? Выход один. Надо задать значения ?, ? и ? и свести проблему к решению типовой задачи линейного целочисленного программирования, которая формулируется следующим образом. Найти целочисленные значения zi?0 (i=1,2,…,8), такие, что удовлетворяются шесть вышеприведенных неравенств, и такие, что минимум функции

достигает своего максимума.

Если задача решена и минимум Р (с/а) есть ? и этот минимум удовлетворяет неравенству ???, то верен силлогизм бабушки. А если ???<?, то верен силлогизм Сумбурука. Если же ?<?, то и бабушка, и Сумбурук ошиблись. Их силлогизмы будут ложными.

Значит, все зависит от того, как определены ?, ? и ?. Пусть для определения этих значений мы опросили четырех людей Ч1, Ч2, Ч3 и Ч4. Их ответы сведены в табл. 6.

Таблица 6

Интерпретация чисел в таблице следующая. Опрашиваемый считает, что можно говорить «почти все», когда явление это встречается не реже, чем в 95 случаях из 100. Аналогично интерпретируются и остальные элементы таблицы. В первом столбце стоят значения ?, во втором ?, а в третьем ?. Каждая строка может быть использована для решения задачи линейного программирования, которую мы сформулировали. Если решить возникающие четыре задачи, то выяснится, что силлогизм бабушки

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату