выходе, сейчас можем взглянуть сбоку. Действительно, в профильной проекции обнаружилось нечто новое: у самого входа в сопло из камеры виднеется крутая ступенька (иногда не одна) — резкое падение толщины жидкого колечка; внезапный рост радиуса вихря
Гидравлики подробно изучают течение в открытом русле водослива (например, оросительный канал).
Жидкость там течет под действием силы тяжести — аналог потока с центробежным давлением в форсунке (оно тоже зависит от массы). Интересное это явление — гидравлический прыжок. Плавно ускоряясь, течет под уклон вода в канале по совершенно гладкому дну, уровень меняется медленно, равномерно. Но вот, разогнавшись до какой-то предельной скорости, поток скачком меняет свою высоту, прыгает иногда почти отвесной стенкой, образуя один или несколько горбов-порогов. Потом на уменьшенном уклоне течение снова идет плавно, но уже на другом уровне. Гидравлический прыжок возникает как раз в сечении, где скорость потока
*
Из теории волнового движения известна простая формула определения скорости распространения волн:
Перенесем на форсунку это уравнение прыжка. Теперь система уравнений замыкается без каких-либо дополнительных гипотез, поскольку появилось новое соотношение, определяющее радиус вихря, а именно равенство
Вот оно, потерянное уравнение. Вместе со старыми уравнениями вся система приводит к принципу максимума расхода — теперь он уже не гипотеза, а следствие теории течения в форсунке.
В чем физический смысл условия
Итак, догадка Г. Н. Абрамовича о существовании максимума расхода подтвердилась экспериментом, эксперимент помог найти аналогию между гидравлическим прыжком жидкости в открытом русле и режимом максимального расхода в форсунке с центробежным давлением.
Но, если мы взялись докапываться до самой сути, можно поставить новый вопрос: «А где же всеобщность исходных фундаментальных уравнений, о которых говорилось раньше? Они ведь должны предсказать все явления, все опытные факты. Нельзя ли из самих исходных уравнений вывести гидравлический прыжок?»
Чтобы ответить на этот вопрос, вновь приходится возвратиться к истории этой проблемы, начиная с того периода, когда практика настойчиво потянула нашу связку «опыт—теория» на новый уровень.
Обычные виды топлива обладают заметной вязкостью. Новые (для того времени) реактивные двигатели космических ракет и больших авиалайнеров, где число и разнообразие форсунок все возрастали, требовали более точных расчетов. Конструкция самой форсунки усложнялась, она обрастала различными клапанами, изготовлялась по все более высокому классу точности и становилась довольно дорогой деталью. Теория форсунки на основе идеальной жидкости сделала свое важное дело, но теперь уже не всегда давала нужную точность.
Исследователи приняли эстафету дальнейшего движения от теории идеальной жидкости к теории вязкой жидкости применительно к процессам в форсунке. Инженер Л. А. Клячко проводил испытания центробежной форсунки на топливах разной вязкости. Сначала в форсунку подавалось маловязкое топливо — бензин, затем более вязкое — керосин. Первые же опыты, к его удивлению, показали парадоксальный результат: для керосина коэффициент расхода оказался больше, чем для бензина. Клячко сказал готовившему эксперимент механику:
— Быть этого не может: вязкость больше, а расход возрос. Что-то здесь не так! Вы, наверное, плохо уплотнили форсунку, и керосин где-то подтекал.
— Форсунка собрана правильно, герметичность я гарантирую,— с достоинством ответил опытный механик.
Повторный эксперимент (правильность сборки форсунки теперь проверяли вместе придирчивый инженер и задетый за живое механик) дал все тот же результат: на керосине коэффициент расхода больше, чем на бензине. Провели опыт с еще более вязким топливом — соляровым маслом. Коэффициент расхода опять возрос.
После мучительных раздумий инженер нашел разгадку парадоксального явления. Действительно, под влиянием трения уменьшается закрутка потока в камере. И тем сильнее, чем больше вязкость топлива. Момент количества движения уже не сохраняется, как в идеальной жидкости. Та же скорость вращения на границе воздушного вихря достигается теперь при уменьшенном моменте количества движения, то есть на меньшем радиусе
Форсунка вдобавок ко всем другим своим полезным качествам оказалась еще простым и универсальным наглядным пособием: кажется, нет такого закона гидродинамики, который нельзя было бы на ней продемонстрировать.
Теперь, когда учет вязкости реальной жидкости рисует картину, более близкую к фактической, мы