ее большими масштабами и задав малые скорости истечения. К этому времени нас, занимавшихся реактивной тематикой, перевели из ЦАГИ в другой институт. Круг проблем и объем работы возросли, коллектив расширился, строились новые установки и стенды.
Руководителем одной из больших научных лабораторий стал видный ленинградский профессор из Политехнического института А. А. Гухман, специалист по термодинамике.
Александр Адольфович Гухман читал лекции в Московском авиационном институте. Их стали посещать и некоторые наши сотрудники. Многие чувствовали потребность глубже вникнуть в классические науки, не полностью понятые когда-то на вечерних факультетах, без отрыва от производства. Мы все время пользовались формулами технической термодинамики, но иные считали ее скучноватой, формальной.
Обычно инженер, научный работник в прикладной области имеет дело с конструкцией, ему нужно представить конкретную модель происходящего там явления, а еще лучше нарисовать ее на бумаге. Он хочет ощутить силовое взаимодействие потоков и тел. А тут какие-то общие начала термодинамики, невидимый каркас, в который вроде все вписывается и о который все время стукаешься.
Термодинамика изучает общие свойства, не зависящие от характера внутренних взаимодействий, и отвлекается от конкретной игры сил. Шла молва, что лекции Гухмана — образец глубины и красоты. Поэт термодинамики? Иные недоумевали, но, прослушав его раз, уже не пропускали ни одной лекции до конца курса. «В семье наук,— говорил Гухман,— классическая термодинамика как старая властная тетка: во все вмешивается, ее недолюбливают, но она всегда права. Почему же наряду с необходимым уважением ей часто отказывают в должной любви? Чего ей не хватает — логики, стройности, строгости? Нет, все эти атрибуты эстетики познания налицо. Отсутствует другое — доступный физический смысл некоторых ее понятий и особенно ключевого— энтропии. Будучи наукой структурно-описательной, классическая термодинамика не связывает понятия с механизмом явления».
Он говорил образно, передавая слушателям ощущение строгой красоты своих построений. Мы начинали понимать, как в природе все виды энергии — механическая, электрическая, лучистая — самопроизвольно стремятся перейти в тепло. Оно — всеобщая «сберкасса», охотно принимает вклады. Но выясняется — тут коварство: это «сберкасса наоборот», с отрицательным процентом. Попробуйте вернуть вклад, то есть с помощью машины превратить тепло обратно в работу — вам выдадут лишь часть, удержав значительную долю: в природе идет непрерывное обесценение энергии. Энтропия есть мера этого процесса.
Лектор все время шел к обобщениям, он развивал единый подход к системе, когда она близко подходит к состоянию равновесия или только начинает выходить из него. Он выстраивал законченные сооружения, созданные по строгому плану. Он мне всегда казался потомственным петербургским интеллигентом, впитавшим лучшие черты прежней культуры, педагогом высокого класса.
В свете теперешних представлений теории информации энтропия приобретает еще более общий и ощутимый смысл. Она оказывается мерой хаоса (в том числе и молекулярного), беспорядка, бесструктурности системы, Скажем, помехи, искажения текста при передаче сигналов могут тоже оцениваться с помощью энтропии. Но к восприятию новых идей надо идти от хорошо понятых классических, которые нам так глубоко излагал Александр Адольфович Гухман.
* * *
В то утро я спешил в институт с желанием скорее приступить к наблюдениям. Уже в проходной я услышал оживленные разговоры — упоминалась, как ни странно, наша «царь-форсунка». А случилось вот что. Накануне ее демонстрировали группе научных работников. Руководивший опытом инженер Клячко подсоединил форсунку прямо к пожарному гидранту. Крепление оказалось неплотным, мощная струя воды брызнула из зазора, и форсунка стала угрожающе поворачиваться в сторону зрителей. Клячко «героически» бросился к стыковочному узлу и тут же был промочен до нитки. А форсунка с неумолимостью Немезиды продолжала поворачиваться в прежнем направлении и накрыла опешивших наблюдателей огромной розеткой из воды. Теперь усмирять «царь-форсунку» выпало мне. Начиная эксперимент, я установил минимальное давление: менее десятой доли атмосферы, когда появляется так называемый режим пузыря. Постепенно подняв давление жидкости чуть выше и убедившись, что крепления надежные, я подошел вплотную к корню факела. Передо мною у соплового отверстия блестела «рюмочка» жидкого гиперболоида (см. рис. 8).
(Этот гиперболоид мне представлялся отрезком башни Шухова в миниатюре — знаменитой тогда в Москве радиобашни станции «Коминтерн». Талантливый изобретатель В. Г. Шухов получил криволинейный контур ажурной конструкции из прямых балок — снова мудрость простых форм.)
Здесь, у корня факела, кривые очертания «рюмочки» возникали из прямолинейных линий тока, по ним шел вектор скорости
Однако для серьезных наблюдений глаз был, конечно, бессилен, требовалась искровая фотография. Только она могла сделать невидимое видимым. Дальнейшие эксперименты с применением этого метода показали «водную феерию» распада во всем великолепии (рис. 11).
На поверхности пелены, вытекающей из сопла форсунки, начинают развиваться волны возмущений. Физика та же, что и в случае цилиндрической струи, только проявляется в более сложных формах.
Не сразу мне удалось разобраться в путаном кружеве распада. Сначала факел распыливания представлялся каким-то струйным «веником». Потом, наоборот, в глаза полезли кольцевые структуры. Картина складывалась постепенно из просмотра многих серий фотографий. Наконец я увидел: на пелене развиваются две группы волн (рис. 12). Гребни первой, идущей по движению струи, видны на контуре ее границы. Они опоясывают поток, стремясь превратить пелену в кольца, нанизанные на ось форсунки. Вторая группа идет по окружности пелены (перпендикулярно первой) и старается разделить жидкость на веер струй, расходящихся из центра сопла.
Эти волны видны на фотографии у корня факела («ребристая структура»). В зоне распада («туманнозыбкая» область, которую я силился разглядеть невооруженным глазом) обнаруживаются кольца или волнистые круговые нити. Это отделившийся гребень кольцевой волны антисимметричного возмущения. Нить рвется на фрагменты, превращающиеся в капли,— результат развития возмущений на каждом отдельном кольце.
При более высоких давлениях жидкости — в десятки атмосфер — с поверхности срываются в виде роя капель гребни мельчайших волн, прежде чем кольцо длинноволновых колебаний полностью сформируется. Это здесь при больших скоростях жидкости возникают мелкомасштабные волны возмущений.
Я долго любовался искровыми фотографиями, которые раскладывал пасьянсом на своем столе. А как объяснить все это теоретически? Провести точное математическое решение для такого сложного течения не представлялось возможным. «Смело упрощайте задачу,— вспомнил я совет старших, более опытных