ее большими масштабами и задав малые скорости истече­ния. К этому времени нас, занимавшихся реактивной тематикой, перевели из ЦАГИ в другой институт. Круг проблем и объем работы возросли, коллектив расширил­ся, строились новые установки и стенды.

Руководителем одной из больших научных лаборато­рий стал видный ленинградский профессор из Политех­нического института А. А. Гухман, специалист по тер­модинамике.

Александр Адольфович Гухман читал лекции в Мо­сковском авиационном институте. Их стали посещать и некоторые наши сотрудники. Многие чувствовали по­требность глубже вникнуть в классические науки, не полностью понятые когда-то на вечерних факультетах, без отрыва от производства. Мы все время пользова­лись формулами технической термодинамики, но иные считали ее скучноватой, формальной.

Обычно инженер, научный работник в прикладной области имеет дело с конструкцией, ему нужно предста­вить конкретную модель происходящего там явления, а еще лучше нарисовать ее на бумаге. Он хочет ощу­тить силовое взаимодействие потоков и тел. А тут какие-то общие начала термодинамики, невидимый кар­кас, в который вроде все вписывается и о который все время стукаешься.

Термодинамика изучает общие свойства, не завися­щие от характера внутренних взаимодействий, и отвле­кается от конкретной игры сил. Шла молва, что лекции Гухмана — образец глубины и красоты. Поэт термоди­намики? Иные недоумевали, но, прослушав его раз, уже не пропускали ни одной лекции до конца курса. «В се­мье наук,— говорил Гухман,— классическая термодина­мика как старая властная тетка: во все вмешивается, ее недолюбливают, но она всегда права. Почему же наря­ду с необходимым уважением ей часто отказывают в должной любви? Чего ей не хватает — логики, строй­ности, строгости? Нет, все эти атрибуты эстетики позна­ния налицо. Отсутствует другое — доступный физиче­ский смысл некоторых ее понятий и особенно ключево­го— энтропии. Будучи наукой структурно-описательной, классическая термодинамика не связывает понятия с механизмом явления».

Он говорил образно, передавая слушателям ощуще­ние строгой красоты своих построений. Мы начинали понимать, как в природе все виды энергии — механиче­ская, электрическая, лучистая — самопроизвольно стре­мятся перейти в тепло. Оно — всеобщая «сберкасса», охотно принимает вклады. Но выясняется — тут ковар­ство: это «сберкасса наоборот», с отрицательным про­центом. Попробуйте вернуть вклад, то есть с помощью машины превратить тепло обратно в работу — вам вы­дадут лишь часть, удержав значительную долю: в при­роде идет непрерывное обесценение энергии. Энтропия есть мера этого процесса.

Лектор все время шел к обобщениям, он развивал единый подход к системе, когда она близко подходит к состоянию равновесия или только начинает выходить из него. Он выстраивал законченные сооружения, создан­ные по строгому плану. Он мне всегда казался по­томственным петербургским интеллигентом, впитавшим лучшие черты прежней культуры, педагогом высокого класса.

В свете теперешних представлений теории информа­ции энтропия приобретает еще более общий и ощути­мый смысл. Она оказывается мерой хаоса (в том числе и молекулярного), беспорядка, бесструктурности систе­мы, Скажем, помехи, искажения текста при передаче сигналов могут тоже оцениваться с помощью энтропии. Но к восприятию новых идей надо идти от хорошо по­нятых классических, которые нам так глубоко излагал Александр Адольфович Гухман.

 * * *

В то утро я спешил в институт с желанием скорее приступить к наблюдениям. Уже в проходной я услы­шал оживленные разговоры — упоминалась, как ни странно, наша «царь-форсунка». А случилось вот что. Накануне ее демонстрировали группе научных работни­ков. Руководивший опытом инженер Клячко подсоеди­нил форсунку прямо к пожарному гидранту. Крепление оказалось неплотным, мощная струя воды брызнула из зазора, и форсунка стала угрожающе поворачиваться в сторону зрителей. Клячко «героически» бросился к стыковочному узлу и тут же был промочен до нитки. А форсунка с неумолимостью Немезиды продолжала поворачиваться в прежнем направлении и накрыла опе­шивших наблюдателей огромной розеткой из воды. Теперь усмирять «царь-форсунку» выпало мне. Начиная эксперимент, я установил минимальное давление: менее десятой доли атмосферы, когда появляется так на­зываемый режим пузыря. Постепенно подняв давление жидкости чуть выше и убедившись, что крепления на­дежные, я подошел вплотную к корню факела. Передо мною у соплового отверстия блестела «рюмочка» жидко­го гиперболоида (см. рис. 8).

(Этот гиперболоид мне представлялся отрезком башни Шухова в миниатюре — знаменитой тогда в Мо­скве радиобашни станции «Коминтерн». Талантливый изобретатель В. Г. Шухов получил криволинейный кон­тур ажурной конструкции из прямых балок — снова мудрость простых форм.)

Здесь, у корня факела, кривые очертания «рюмочки» возникали из прямолинейных линий тока, по ним шел вектор скорости V вырвавшихся струй — результирую­ щая касательной и и осевой w скоростей в сопле фор­сунки. Линии ясно различались на жидкой поверхности, прочерченные бугорками шероховатости стенок форсун­ки. Далее виднелась туманно-зыбкая непонятная об­ласть, из которой широко разлетался веер струй. Если часто моргать глазами («каждый сам себе стробо­скоп»), в струях удавалось различить вереницы капель.

Однако для серьезных наблюдений глаз был, конеч­но, бессилен, требовалась искровая фотография. Только она могла сделать невидимое видимым. Дальнейшие эксперименты с применением этого метода показали «водную феерию» распада во всем великолепии (рис. 11).

Рис. 11. Распад пелены центробежной форсунки

На поверхности пелены, вытекающей из сопла форсун­ки, начинают развиваться волны возмущений. Физика та же, что и в случае цилиндрической струи, только проявляется в более сложных формах.

Не сразу мне удалось разобраться в путаном круже­ве распада. Сначала факел распыливания представлял­ся каким-то струйным «веником». Потом, наоборот, в глаза полезли кольцевые структуры. Картина складыва­лась постепенно из просмотра многих серий фотогра­фий. Наконец я увидел: на пелене развиваются две группы волн (рис. 12). Гребни первой, идущей по дви­жению струи, видны на контуре ее границы. Они опоя­сывают поток, стремясь превратить пелену в кольца, нанизанные на ось форсунки. Вторая группа идет по окружности пелены (перпендикулярно первой) и стара­ется разделить жидкость на веер струй, расходящихся из центра сопла.

Эти волны видны на фотографии у корня факела («ребристая структура»). В зоне распада («туманно­зыбкая» область, которую я силился разглядеть нево­оруженным глазом) обнаруживаются кольца или вол­нистые круговые нити. Это отделившийся гребень коль­цевой волны антисимметричного возмущения. Нить рвется на фрагменты, превращающиеся в капли,— результат развития возмущений на каждом отдельном кольце.

Рис. 12. Факел распыливания центробежной форсунки: а — рисунок по фотографии, сделанной при большой экспозиции, б — схема рас­пада пелены (образование волн)

При более высоких давлениях жидкости — в десят­ки атмосфер — с поверхности срываются в виде роя ка­пель гребни мельчайших волн, прежде чем кольцо длин­новолновых колебаний полностью сформируется. Это здесь при больших скоростях жидкости возникают мел­комасштабные волны возмущений.

Я долго любовался искровыми фотографиями, кото­рые раскладывал пасьянсом на своем столе. А как объяснить все это теоретически? Провести точное мате­матическое решение для такого сложного течения не представлялось возможным. «Смело упрощайте за­дачу,— вспомнил я совет старших, более опытных

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату