зом и для очень мелких капель. 

Таким «победным флагом» можно было помахать перед глазами членов научно-технического совета. Но все-таки хотелось увидеть, зафиксировать сам процесс дробления. Конечно, здесь годился прибор, который тогда назывался «лупа времени» или попросту «скорост­ное кино». Но его надо было искать в другом институте. К тому же прибор нуждался в тонкой наводке и фоку­сировке. А куда наводить эту оптическую «тяжелую артиллерию», если точка дробления неизвестна и навер­няка «гуляет» в пространстве и времени? Совместно с оптиками мы придумали более простой метод. Летящая капля фотографировалась в затемненной комнате при боковом освещении (рис. 16). Объектив фотоаппарата оставался открытым; свет, отраженный поверхностью ртутных капель (или преломленный каплями воды), по­падал в объектив и прочерчивал на пленке всю траек­торию, ясно обозначая место раздвоения. Труд, вложен­ный в методику, всегда окупается сторицей. Опыты показали четкий результат. Для каждой жидкости име­ется своя критическая скорость, она тем больше, чем мельче капля; критическая скорость растет с ростом по­верхностного натяжения жидкости и с уменьшением плотности газа. 

Эксперименты прошли быстро, на одном дыхании. Были получены новые интересные факты, теперь пред­стояло осмыслить их, свести воедино многочисленные столбцы разрозненных цифр в протоколах опытов. Каков закон дробления? Я попробовал рассуждать просто. . При полете капли противоборствуют две силы: активная — аэродинамическая — стремится деформировать каплю; стабилизирующая, обусловленная поверхност­ным натяжением, сопротивляется — эластичная жидкая поверхность изгибается, но не рвется. 

Рис. 16. Схема экспериментов по дроблению капель в газовом пото­ке: 1 — выходное отверстие воздуходувки, 2 — капельница, 3 — осве­титель, 4 — точка раздвоения капли, 5 — фотоаппарат, 6 — улавли­вающий экран

О чем говорит факт существования критической ско­рости? О некой критической стадии деформации. Если отклонение от шара невелико, форма (как и сфериче­ская) еще устойчива относительно малых возмущений, деформация обратима; потом на излете капля стянется в шарик. Но если дело зашло далеко, достигнут крити­ческий предел — возврата нет, малые возмущения (как и на струе) довершат дело, развалят каплю. Дойдет до критической деформации или нет, это вопрос «кто — кого» в противоборстве сил. 

Движущаяся капля всегда немного вибрирует. Вда­ли от критической фазы эти малые колебания для нее безопасны. На критической грани капля «дышит тяже­ло», как бы раздумывая — развалиться или нет, и где- то на «выходе» перетягивается восьмеркой пополам. 

Теперь от качественных соображений предстояло переходить к числам, памятуя, что качество — непознан­ное количество. Легко сказать: к числам. От них пестрит в глазах. 

Таб.1 

В каждом опыте (а он «схватка в воздухе») капля имеет свою «визитную», или, может, лучше — «летную» карточку. Там о ней все записано: диаметр капли, поверхностное натяжение жидкости, скорость и плотность обдувающего газа. Целых четыре числа — умножьте на сотни опытов... необозримое поле. А что, если «роковой вопрос» жизни капли выразить на коли­чественном языке соотношения противоборствующих сил: активной — давления потока и демпфирующей — давления поверхностного натяжения (они как раз за­висят от четырех наших чисел). Возьмем давление газа Pr в лобовой точке капли, где оно наибольшее и равно скоростному напору ρu2/2 (струйка тока газа полностью тормозится). Давление поверхностного натяжения опре­делим по известной формуле Лапласа для жидкого шара Рж = 4σ/а. Величина отношения давлений (с точностью до постоянных коэффициентов) дает комплекс, называе­мый критерием, или числом Вебера We: 

 Рг/РжWe = ρu2а/σ.

Теперь четыре числа заменялись одним. Путь эконо­мии информации обычно плодотворен. Он и привел меня к искомому закону. Стоило разложить «летные» карточки моих капель по порядку новых номеров, как обнаружилась интересная закономерность. 

Пусть взяты самые разные четверки исходных чисел для совсем непохожих жидкостей: воды, ртути, спирта, керосина. Если их новый «паспортный номер» одинаков, одинакова и судьба капель. Когда число Вебера меньше десяти, капля остается целой; если оно равно десяти, происходит раздвоение; при числе чуть больше деся­ти (11—12 — деликатная область, верхнюю границу най­ти трудно) — распад на несколько крупных (три, четы­ре, пять...) примерно равных частей. Дальше, если число достигает 14, переход в мир иной, от порядка к хао­су — режим распыливания: капли, возникшие в резуль­тате распада, на порядок меньше исходной капли и со­ставляют статистический спектр; с ростом числа Вебера за 14 (закритическая область) капельные осколки все измельчаются. Различные формы деформации и распа­да капли в зависимости от числа Вебера приведены в таблице (Таб.1). 

Теперь новое число приобрело ясный физический смысл критерия деформации и дробления летящей кап­ли. Критической фазе отвечает его минимальное дробя­щее значение (рис. 17). 

Все добытые в опыте цифры, как льдинки мальчика Кая в андерсеновской «Снежной королеве», сами сло­жились в нужной комбинации: Кай прочел слово «вечность», а мы — слово «истина». Это слово нас вдохновляло, хотя речь шла всего лишь об одной маленькой научной истине из мира таких же маленьких капель.

Рис. 17. График дробления капель в потоке газа:: 1 — режим критик ческой деформации, 2 —режим распыливания

 ***

Найденная формула безотказно действовала для всех не очень вязких жидкостей и годилась для разных видов топлива реактивных двигателей. В случае вязких жидкостей дело усложнялось; например, для касторово­го масла критерий раздвоения оказался много больше. Это и понятно: здесь демпфирующие

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату