биологическими факторами. Эти работы показывают всю широту и сложность проблем, которые следуют из модели неограниченного роста.
Однако в демографии выражение (1), характеризующее гиперболический рост населения мира, никогда всерьез не рассматривалось по трем причинам.
Во-первых, в демографии было принято рассматривать население Земли просто как арифметическую сумму отдельных, не взаимодействующих популяций. Ведь задача демографии виделась в объяснении роста в зависимости от конкретных социальных и экономических условий, которые невозможно сформулировать для всего населения мира и тем более связывать скорость роста с полным населением Земли. Во-вторых, выражение (1) обращается в бесконечность по мере приближения к 2025 г. и не имеет смысла за пределом этой даты. Наконец, это выражение приводит к трудностям и при оценках населения в далеком прошлом. Так, 20 млрд лет тому назад, при рождении Вселенной согласно представлениям космологии, должно было бы уже быть десять человек, несомненно, самих космологов, наблюдающих и обсуждающих возникновение Вселенной!
В демографии было принято рассматривать население Земли просто как арифметическую сумму популяций отдельных стран.
Тем не менее постоянство этого закона роста поразительно, и если исходить из известных нам оценок населения в прошлом, он соблюдается при увеличении населения земли в десятки тысяч раз. По существу так описывается развитие человечества со времени появления
Эта оценка не противоречит оценкам других авторов, касающихся этого существенного времени в истории человечества в эпоху антропогенеза. Первые открытия принадлежат английскому антропологу Лики. В дальнейшем крупный вклад был сделан французской экспедицией, которой руководил Коппен, исследовавший раннюю эпоху становления человечества. Именно тогда начался гиперболический рост численности населения нашей планеты. С тех пор эта численность увеличивалась прямо пропорционально квадрату населения мира вплоть до нашего времени, когда для гиперболического роста скорость обратно пропорциональна квадрату времени. Медленная в начале, по мере роста населения скорость все увеличивается и в итоге происходит быстрее, чем по экспоненте, устремляясь в бесконечность, в конечное время, равное Т1 = 2025 г.
Поэтому, обращаясь к развитию населения как единой динамической системы, мы будем рассматривать выражение (1) не только как обобщение исторических данных, но и как объективную физическую закономерность и математически содержательное выражение. Оно описывает рост населения как самоподобный процесс, развивающийся по гиперболической траектории, поскольку функция роста (1) — однородная функция. Это свойство, открытое еще Эйлером, указывает на то, что в таких функциях нет характерного внутреннего масштаба. В частности, такой функцией является линейная функция. Однако экспоненциальный рост таким свойством уже не обладает, поскольку он определяется внутренним параметром экспоненциального времени Тe.
Линейный и гиперболический процессы самоподобны, т. е. во все моменты времени относительный рост неизменен.
Однородные функции — линейная, или же гиперболическая, — описывают рост как самоподобный или автомодельный процесс, в котором во все моменты времени относительный рост неизменен. Только в выделенных точках особенностей, или сингулярностей, это самоподобие нарушается. В случае роста по гиперболе это происходит в далеком прошлом, когда население асимптотически приближается к нулю, либо в то критическое мгновение T1 при котором N обращается в бесконечность в момент обострения. В этой сингулярности, при которой функция (1) стремится к бесконечности, состоит главная привлекательность этой формулы, поскольку именно тогда и происходит коренное изменение в развитии системы, связанное с демографическим переходом от стремительного роста к стабильному населению мира.
Мой доклад о росте населения Земли на семинаре Сергея Павловича Курдюмова стал настоящим откровением для меня и для коллектива Института прикладной математики им. М. В. Келдыша. Действительно, в современной прикладной математике такие
Эти понятия принадлежат физике сложных систем, и теперь они применяются к человечеству в целом, став основанием для новых количественных результатов и поучительных качественных аналогий.
Прежде чем мы обратимся к выводам, следующим из закона гиперболического роста, выясним смысл постоянной величины С, которая, как легко видеть, определяет население Земли за год до особенности. Таким образом, эта постоянная зависит от выбранной единицы времени, основанной на времени обращения Земли вокруг Солнца, которая никак не выражает природу человека. Однако, если в эту модель ввести собственную единицу времени, определяемую уже эффективной продолжительностью жизни человека, то это открывает путь к определению пределов применимости (1). Это время τ = 45 близко к среднему возрасту человека, и в рамках модели оно возникает как полуширина глобального демографического перехода (см. рис. 5). Тогда при построении модели время следует выражать в масштабе τ = 45 лет, и вместо постоянной С целесообразно ввести константу К = √C/τ = 60000. В отличие от постоянной С, имеющей размерность времени, К — это безразмерный большой параметр, число, которое определяет все соотношения, возникающие при построении модели роста. В дальнейшем мы увидим, что во всех выводах теории это число становится главной характеристикой той динамической системы, развитие которой мы рассматриваем.
Так, числом К ~ 105 определяется как начальная популяция
Главный секрет гиперболического, взрывного развития состоит в том, что скорость роста пропорциональна не первой степени численности населения, как при экспоненциальном росте, отражающем способность каждого человека к размножению, а второй степени — квадрату численности населения мира. Это существенное свойство, которое непосредственно следует из того, что рост человечества описывается гиперболическим законом. Следует подчеркнуть, что изменение показателя степени от единицы для экспоненциального роста к двойке для гиперболического закона роста — это не уточнение ранее принятой модели, а появление качественно новой закономерности в описании роста популяции (в нашем случае — всего человечества).
Секрет гиперболического, взрывного развития состоит в том, что скорость роста пропорциональна квадрату численности населения мира.
Настоящее исследование в значительной мере посвящено изучению всех последствий этого подхода, который указывает на то, что в основе роста человечества следует рассматривать коллективное