такие, как снежинки и броуновское движение. Эти объекты, в определенном — техническом — смысле слова, не могут иметь измерение в целых числах144. Он перечисляет также теорию катастроф, направления в математике, которое занимается особенностями некоторых поверхностей (и других сходных объектов). Эти две математические теории, действительно, интересны и имеют ряд приложений в естественных науках, в частности, в физике145. Как все передовые направления в науке, они предлагают новый инструментарий и привлекают внимание к новым проблемам. Но они вовсе не ставят под сомнение традиционную эпистемологию.
В конечном счете, Лиотар не дает никакого весомого доказательства своим философским заключениям.
Идея, к которой подталкивают эти открытия (и многие другие), состоит в том, что преимущество непрерывно дифференцируемой функции146 как парадигмы познания и прогнозирования постепенно исчезает. Наука постмодерна, интересуясь неопределенностью, пределами допустимости, квантами, конфликтами неполноты, «фракталами», катастрофами, парадоксами прагматики, — она создает теорию собственной — разрывной, катастрофичной, не дифференцируемой147, парадоксальной — эволюции. Она изменяет смысл слова «знание» и говорит, как это изменение может происходить. Она производит не известное, а неизвестное. И она предполагает такую модель обоснования (легитимации), которая связана вовсе не с эффективной производительностью, а скорее с различием, понятым как паралогия. (Лиотар 1979, с. 97)
Внимательно изучим этот фрагмент, поскольку он часто цитируется148. Лиотар смешивает по крайней мере шесть различных специальных областей математики и физики, на самом деле достаточно далеких друг от друга. Более того, он смешивает введение не дифференцируемых (разрывных) функций в научное моделирование с так называемой «прерывистой», то есть парадоксальной, эволюцией самой науки. Теории, перечисленные Лиотаром, разумеется, производят новое знание, не изменяя смысла этого слова149.
Но вернемся к теории хаоса150. Мы рассмотрим три типа заблуждений: те, что относятся к философскому значению теории, те, что связаны с метафорическим употреблением слова «линейный» (и «нелинейный») и те, что касаются ее скороспелого использования и распространения.
О чем идет речь в теории хаоса? Есть большое число физических феноменов, подчиняющихся детерминистским законам, и потому теоретически предсказуемых, которые тем не менее на практике ведут себя непредвиденным образом из-за их «чувствительности к исходным условиям». Это означает, что две системы, которые управляются одними и теми же законами, в какой-то момент будут находиться в сходном (но не идентичном) состоянии, а через относительно короткий момент времени станут сильно различаться по своему состоянию. Этот феномен можно представить себе, вообразив, что взмах крыла бабочки сегодня на Мадагаскаре вызовет во Флориде через три недели ураган. Разумеется, бабочка как таковая ничего особенного не делает. Но если сравним две системы, представляющие земную атмосферу с взмахом крыла бабочки и без него, то окажется, что результат через три недели будет различным (будет ураган или его не будет). Практическое следствие состоит в том, что, по всей видимости, нельзя предсказать, что будет через несколько недель151. В самом деле, придется принять в расчет столь большое количество данных, и с такой точностью, что даже самые мощные компьютерные системы, какие только можно себе вообразить, не справятся с такой задачей.
Чтобы быть более точным, возьмем систему, исходное состояние которой мы знаем недостаточно хорошо (как это всегда бывает на практике); очевидно, что эта неточность отразится на качестве предсказаний, которые мы можем сделать в отношении ее дальнейшего состояния.
Со временем, как правило, неточность предсказаний будет возрастать. Но
Чтобы объяснить эту идею, представим себе, что мы хотим сделать наше предсказание более точным и нас интересует, на какой интервал времени оно рассчитано. Предположим также, что техническое усовершенствование позволит по крайней мере наполовину восполнить нашу неточность при описании исходного состояния. Для системы первого типа это улучшение позволит увеличить вдвое время, на которое мы сможем сделать наши предсказания с желаемой точностью. Но для системы второго типа такое уточнение данных позволит увеличить время лишь на какую-то определенную величину: например, дополнительно на одну секунду, или дополнительно на одну неделю (это зависит от ситуации). Упрощая, первые системы можно назвать «не хаотичными», а вторые — «хаотичными» (или подверженными «чувствительности к исходным условиям»). Хаотичные системы, таким образом, характеризуются их ограниченной предсказуемостью, поскольку даже заметное уточнение исходных данных не влечет за собой соответствующего увеличения времени, на которое распространяются наши предсказания153.
Может быть пример с земной атмосферой, которую трудно предсказать, не столь впечатляющий. Впечатляет то, что система, которая может быть описана с помощью
Тем не менее следует избегать поспешных философских заключений. Например, заявлений о том, что хаос обозначает границы науки. Ведь мы не оказываемся в тупике и не упираемся в плакат с надписью «дальнейшее движение запрещено». Теория хаоса открывает множество возможностей и обнаруживает массу новых объектов154. С другой стороны, всегда было известно, или допускалось, что наука не может «все» предсказать и «все» просчитать. Узнать, что своеобразный объект (время — через несколько недель) неизбежно ускользает от наших предсказаний, — конечно неприятно, но это не остановит развитие науки. К примеру, в девятнадцатом веке было прекрасно известно, что невозможно знать все состояния всех молекул газа. Но тем не менее удалось выработать методы статистической физики, которые позволяют изучить многие характеристики сложных систем с большим числом составляющих, таких как газ. Сходные статистические методы в наши дни используются для изучения феноменов хаоса. И, в конце концов, цель науки — не только предсказывать, но и понимать.
Второе неверное заключение касается Лапласа и детерминизма. Подчеркнем, что в этом старом споре всегда было принципиально важно различить детерминизм и предсказуемость. Детерминизм относится к самой природе (не зависящей от нас), в то время как предсказуемость относится отчасти к природе, а отчасти к нам самим. Чтобы убедиться в этом, представим себе абсолютно предсказуемый феномен, движение часов, например, — но помещенный в недоступное для нас место (например, на вершину горы). Движение становится
Концепция Лапласа тоже, заметим, часто понимается неверно. Когда он вводит универсальный детерминизм155, он сразу же оговаривается, что