высказывает этот принцип в самом начале своей работы о
В последние три десятка лет в математической теории хаоса много открытий, но предположение, согласно которому некоторые физические системы могут быть чувствительны к исходным условиям вовсе не является новым. Вот что говорил Максвелл в 1877 году после провозглашения принципа детерминизма («одна и та же причина порождает всегда одно и то же следствие»):
Есть другое предположение, которое не следует путать с предыдущим, оно гласит: «Сходные причины производят сходные следствия». Это верно, только если незначительные изменения исходных условий повлекут за собой лишь незначительные изменения конечного состояния системы. Это положение проверено на большом числе физических феноменов; но есть другие случаи, когда незначительные изменения исходных условий влекут за собой значительные изменения в конечном состоянии системы. (Максвелл 1952 [1877], с. 13)
А вот текст Пуанкаре 1909 года, не потерявший и сегодня своей актуальности, о метеорологических прогнозах:
Почему метеорологам так трудно точно предсказывать погоду? Почему ливни и бури приходят, как нам кажется, случайно, и в связи с этим множество людей считают вполне естественным молиться о том, чтобы шел дождь или светило солнце, при том, что они же считали бы нелепым молиться о солнечном затмении? Мы видим, что великие потрясения происходят как правило там, где атмосфера находится в неустойчивом равновесии, что циклон должен появиться, но где именно? Невозможно сказать: какое-то изменение в одну десятую градуса — и циклон возникает здесь, а не там и обрушивается на те области, что должны были быть защищены. Если бы знать эту десятую градуса, можно было бы сказать об этом заранее, но наблюдения не бывают ни достаточно тщательными, ни достаточно точными, и поэтому все кажется случайным стечением обстоятельств. (Пуанкаре 1909, с. 69)
Перейдем к заблуждениям, связанным с употреблением слова «линейный». Прежде всего надо подчеркнуть, что в математике существует
Из-за этих злоупотреблений мы часто встречаем у постмодернистских авторов ссылку на теорию хаоса как на революционную составляющую против ньютоновской механики — обозначенной как «линейная» — или на квантовую механику как на пример нелинейной теории160. На самом деле так называемое ньютоновское «линейное мышление» замечательно использует нелинейные уравнения; а также многие примеры из теории хаоса взяты из ньютоновской механики, и изучение хаоса представляет собой своеобразное
Однако чаще всего речь идет о неверном понимании связи между линейностью, хаосом и существованием определенного решения уравнения. Нелинейные уравнения, как правило, труднее для разрешения, чем линейные, но это не всегда: существуют очень трудные проблемы решения линейных уравнений так же, как очень простые решения для нелинейных. Например, уравнения Ньютона для решения проблемы Кеплера с двумя небесными телами (Солнцем и
Трудностей и заблуждений становится больше, когда дело касается применения математической теории хаоса к конкретным ситуациям в физике, биологии или социальных науках161. В самом деле, следует иметь представление о соответствующих переменных и типе их эволюции; к тому же трудно бывает найти математическую модель одновременно достаточно простую для исследования и способную адекватно описать выбранный объект. Впрочем эти проблемы встают перед математической теорией каждый раз, когда она применяется к реальности (достаточно вспомнить теорию катастроф).
Часто можно наблюдать совершенно фантастические попытки так называемого «применения» хаоса, например, к анализу прибыли предприятия или к литературе. Иногда вместо хорошо разработанной математически теории хаоса имеют ввиду только разрабатываемые теории сложности и самоорганизации, что еще больше запутывает ситуацию.
Еще одно заблуждение возникает, когда смешивается математическая теория хаоса с народной мудростью суждений о значительных последствиях незначительных причин типа «если бы нос Клеопатры был короче…». Не прекращаются рассуждения о хаосе «относящемся» к истории или к обществу. Но когда говорят об обществе или истории, то имеют дело (скорее всего) с системами с большим числом переменных, для которых, и это главное, невозможно составить уравнения. Так что рассуждения о хаосе применительно к таким системам не добавляют к народной мудрости ничего нового162.
Последнее заблуждение происходит из-за вольной или невольной путаницы различных значений слова «хаос», вызывающий множество ассоциаций: его специального значения в математической теории нелинейных динамических систем — где оно близко по смыслу «чувствительности к исходным условиям» — и того широкого смысла, который придается ему в социологии, политике, истории и даже теологии — где оно часто оказывается синонимом беспорядка. Как мы увидим, Бодрийар и Делез-Гваттари используют эту путаницу (или попадают в нее) самым бессовестным образом.