комментарии Гипсикла к которому присоединены к 13 книгам 'Начал' Eвклида в виде XIV книги.

Публикации МЦНМО

В 2003 г. в издательстве 'Московский центр непрерывного математического образования'(МЦНМО) была опубликована книга 'Геометрия групп Ли. Симметрические, параболические и периодические пространства', написанная мной и М.П.Замаховским.

В 2004 г. была опубликована моя книга 'Аполлоний Пергский', являющаяся научной биографией великого геометра.

Находится в печати русский оригинал книги 'Эли Картан', написанный М.А.Акивисом и мной, к которой добавлены мои русские переводы речи Э.Картана на праздновании его 70-летия, статьи Э.Картана, посвященной 100-летию со дня рождения Софуса Ли, и французского оригинала лекции Картана о влиянии Франции на развитие математики.

Готовится к печати мой полный русский перевод 'Коническх сечений' Аполлония с подробными комментариями.

Устойчивость материальных структур

В главах о симплектической геометрии, в книгах по геометрии групп Ли я изложил результаты моих дальнейших размышлений об устойчивости материальных структур. Более подробно я изложил эти результаты в 2005 г. в журнале 'Философские исследования'.

Классическими устойчивыми материальными структурами являются механический и электромагнитный осцилляторы, внутреннее которых выражается одинаковыми дифференциальными уравнениями.

Идею о том, что атом водорода также можно рассматривать как электромагнитный осциллятор, я впервые опубликовал в 1958 г. в Ученых записках Коломенского пединститута. При этом роль конденсатора этого осциллятора играет 'позитроний', состоящий из электрона, находящегося вне протона, и из позитрона, находящегося внутри протона, а роль катушки самоиндукции играет нейтрон, входящий в состав протона.

Физик К.Шарнгорст, с которым я обсуждал эту проблему, сообщил мне, что Нобелевский лауреат М.Гел-Манн в 1960-х годах установил, что внутри нейтрона находятся три 'кварка', причем электрический заряд одного из них равен 2/3 заряда электрона, а электрический заряд каждого из двух остальных кварков равен 1/3 заряда позитрона.

Из этого я сделал вывод, что кварки можно рассматривать как сердечники катушек самоиндукции электромагнитного осциллятора, и внутреннее движение в атоме водорода состоит в том, что электрон падает на нейтрон, входит в него и движется по винтовой линии на поверхности одного из кварков, а затем возвращается в исходное положение, после чего это колебание повторяется снова, а позитрон движется по винтовым линиям на поверхностях сначала одного, а потом другого кварка, выходит из нейтрона, а затем падает на нейтрон и возвращается в исходное положение, и это колебание также повторяется снова. В отличие от классических осцилляторов энергия движения в атоме водорода не рассеивается в пространстве, поэтому колебания электрона и позитрона в атоме водорода не затухают. Дифференциальным уравнением этого движения является уравнение Шредингера.

При соединении 4 атомов водорода в один атом гелия два из 4-х позитрониев этих атомов превращаются в кванты света. Выделение энергии при этом процессе определяет излучение Солнца и лежит в основе водородной бомбы.

В статье в журнале 'Философские исследования' рассматриваются и другие устойчивые материальные структуры, в частности, живые организмы и различные виды человеческого общества.

Добавления к моим книгам

В 2004 г, в журнале 'Suhayl' я опубликовал добавление и исправления к моей книге с Ихсаноглу.

В 2006 г. в сборнике Научно-исследовательского института математики и механики при Казансом университете добавление и исправление к моей книге с М.П.Замаховским,

ЧАСТЬ ВТОРАЯ. МЫСЛИ

Глава 1. ПРОСТРАНСТВА И ГРУППЫ Пространства

В математике пространствами называются множества элементов, обычно именуемых точками, в которых выделены те или иные подмножества. В аффинных и проективных пространствах выделенные подмножества называются прямыми линиями, плоскостями и гиперплоскостями, в конформных и псевдоконформных пространствах - окружностями, сферами и гиперсферами, в топологических пространствах - замкнутыми множествами, а их дополнения - открытыми множествами. Выделенные подмножества удовлетворяют определенным условиям или аксиомам.

Если в множестве точек всяким двум точкам поставлено в соответствие число, удовлетворяющее определенным условиям, и называемое расстоянием между двумя точками, множество называетсз метрическим пространством. Два метрических пространства, между которыми установлено взаимно однозначное соответствие, сохраняющее расстояние, называются изометричными.

Точки пространств обычно определяются несколькими числами или элементами более сложных систем, называемых алгебрами. Эти числа или элементы называются координатами точек. Число независимых координат точек пространства называется размерностью пространства. Пространство размерости n называется n-мерным.. В аффинных и проективных пространствах можно ввести метрику с помощью квадратичных или эрмитовых форм от координат точек; полученные пространства называютая квадратичными и эрмитовыми евклидовыми, псевдоевклидовыми, неевклидовыми и симплектическими пространствами.

Аффинные, проективные, конформные и псевдоконформные пространства называются инцидентностными. Евклидовы, псевдоевклидовы и неевклидовы пространства являются метрическими.

Представление о пространстве как о множестве точек сложилось только в XIX-XX веках. В древности считалось, что линии, поверхности и пространство не состоят из точек, а только являются 'геометрическими местами', в которых находятся точки.

Аксиомы топологического пространства очень просты: 1) все пространство - замкнутое множество, 2) 'пустое множество', т.е. множество, не содержащее ни одной точки, также считается замкнутым, 3) объединение конечного числа замкнутых множеств замкнуто, 4) пересечение любой совокупности замкнутых множеств замкнуто.

В случае, когда замкнутым считается любое множество точек, пространство называется дискретным, в случае, когда замкнутыми множестами считаются только все пространстно и пустое множество, пространство называется тривиальным.

В случае, если в топологическом пространстве задана такая система открытых множеств, что любое открытое множество является объединением множеств этой системы, то множества этой системы называются окрестностями. Окрестность, содержащая точку А, называется окрестностью точки А.

Наиболее важными топологическими пространствами являются хаусдорфовы пространства, в которых выполнены еще две аксиомы: 5) точки замкнуты, 6) для всяких двух точек существуют непересекающиеся окрестности этих точек.

Два топологические пространства, между которыми установлено взаимно однозначное соответствие, причем замкнутые множества одного пространства соответствуют замкнутым множествам другого, называются гомеоморфными пространствами.

Однозначное преобразование одного топологического пространства в другое, переводящее замкнутые множества в замкнутые, называется непрерывным преобразованием.

Группы

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату