Проблема фреймов существует не только у искусственного интеллекта. У человеческого — тоже. Как замечает психолог Дэниел Гилберт в своей книге «Спотыкаясь о счастье», когда мы представляем себя или окружающих в определенной ситуации, наш мозг отнюдь не выдает длиннющий перечень вопросов о всевозможных потенциально релевантных подробностях. Скорее, как усердный ассистент оживляет скучную презентацию Power Point имеющимися в фильмотеке материалами, так и наша «умозрительная симуляция» рассматриваемого события извлекает недостающие фрагменты из обширной базы воспоминаний, образов, опыта, культурных норм и воображаемых результатов{73}. В одном из обзоров покидавшие ресторан респонденты охотно расписывали униформу официантов или игравшую музыку — тогда как в действительности никакой музыки и никаких официантов-мужчин не было. В другом эксперименте учащиеся, которых спрашивали о цвете классной доски, вспоминали, что она зеленая, хотя на самом деле она была синей {74}. В третьем испытуемые систематически переоценивали как досаду от предполагаемых убытков, так и радость от предполагаемых прибылей{75}. В четвертом познакомившиеся по Интернету испытывали тем больше симпатий к потенциальному партнеру, чем меньше сведений о нем было доступно{76}. Во всех этих случаях необходима дополнительная информация. Но, поскольку процесс «заполнения пробелов» происходит мгновенно и не требует ни малейших усилий, обычно мы его не осознаем. Поэтому нам редко приходит в голову, что чего-то не хватает.
Проблема фреймов предостерегает: поступая так, мы склонны к совершению ошибок. И мы их совершаем. Постоянно. Но, в отличие от неудач в сфере искусственного интеллекта, промахи людей не столь вопиющи, и переписывать всю ментальную модель их мышления, к счастью, не приходится. Скорее, как воображаемый читатель «American Soldier» Пола Лазарсфельда нашел два противоположных результата равно очевидными, так и мы, узнав, как все обернулось, почти всегда можем определить ранее упущенные аспекты ситуации. Теперь-то они кажутся релевантными! Мы ожидали, что, выиграв в лотерею, будем счастливы, но вместо этого огорчены? Бесспорно, прогноз плохой. Но ко времени осознания ошибки мы уже располагаем новыми сведениями — скажем, обо всех тех родственниках, которые внезапно объявились с требованием денег. Тогда кажется, будь у нас эта информация раньше, мы бы предвосхитили свое нынешнее состояние верно и, возможно, никогда бы не купили лотерейный билет. Получается, вместо сомнения в собственной способности прогнозировать будущее мы делаем вывод, что просто упустили из виду нечто важное. О, эту ошибку мы ни в коем случае больше не допустим! — но, увы, совершаем ее снова и снова. Не важно, как часто нам не удается верно предсказать поведение окружающих: как только их поступки становятся известны, мы объясняем собственные заблуждения с точки зрения чего-то, о чем раньше понятия не имели. Таким образом, проблему фреймов весьма успешно удается замять — уж в следующий-то раз мы все сделаем правильно! Беда в том, что в действительности мы никогда не можем усвоить, что можем прогнозировать, а что — нет.
* * * Нигде эта тенденция не является более очевидной и не поддается исключению труднее, чем во взаимосвязи материальных вознаграждений. Ни у кого не вызывает сомнений, что качество и эффективность работы служащего могут повышаться в ответ на соответствующие финансовые стимулы, — и в последние несколько десятков лет немалой популярностью стали пользоваться системы вознаграждений, основанные на результатах деятельности. В основном это касается резко увеличившихся вознаграждений руководства компаний, привязанных к курсу акций{77} . Разумеется, бесспорно и то, что трудящихся интересуют не только деньги. Следовательно, такие факторы, как удовольствие от работы, признание и карьерный рост, вроде бы тоже должны оказывать свое влияние. При прочих равных здравый смысл подсказывает: улучшить эффективность деятельности служащих можно соответствующими материальными вознаграждениями. И все-таки, как показал ряд исследований, взаимосвязь между оплатой и результатами является на удивление сложной.
Недавно мы с коллегой по Yahoo! Уинтером Мейсоном провели ряд