частиц, связанных сильным взаимодействием и как бы «защищающих» исходную частицу (рис. 41). Даже если при первоначальном событии ничего подобного не было, сильное взаимодействие породит из одного– единственного исходного кварка или глюона струю из множества новых кварков и глюонов.

Протонные коллайдеры порождают множество струй, поскольку сами протоны состоят из частиц, связанных сильным взаимодействием. Такие частицы порождают россыпь из множества дополнительных частиц, связанных сильным взаимодействием и путешествующих рядом с ними. Иногда они также создают кварки и глюоны, которые разлетаются в разных направлениях и порождают собственные независимые струи.

В книге «Закрученные пассажи» я привела цитату из «Песни ракет» [46] из мюзикла «Вестсайдская история». Мне кажется, она хорошо описывает и адронные струи:

Ты никогда не бываешь один, Ты никогда не теряешь связи, Ты дома везде, где рядом друзья: Ты защищен надежно, Когда ожидается встреча.

Кварки, как и большинство членов уличных банд, по одному не ходят, они всегда находятся в дружественной, прочно связанной среде — среди своих.

Струи, как правило, оставляют видимые следы, поскольку некоторые частицы в них заряжены. Достигнув калориметра, струя отдает свою энергию. При помощи тщательных экспериментальных исследований, а также аналитических и компьютерных расчетов экспериментаторы выясняют свойства адронов, положивших начало каждой конкретной струе. И все же из?за сильного взаимодействия и струй кварки и глюоны исследовать намного сложнее. В конце концов, вы не можете измерить кварк или глюон непосредственно, вы меряете лишь струю, частью которой он является. Именно поэтому большинство кварковых и глюонных струй не различимы между собой. Все они выделяют много энергии и оставляют множество треков (на рис. 42 можно увидеть схематическое изображение того, как детекторы распознают ключевые частицы Стандартной модели).

РИС. 41. Струи представляют собой летящие группы частиц, связанных сильным взаимодействием, возникающим вокруг кварков и глюонов. На рисунках показана их регистрация в трекерах и адронном калориметре. (Печатается с разрешения CERN’a.)

Даже после измерения свойств адронной струи очень трудно, если не невозможно, сказать, который из различных кварков или глюонов ее инициировал. Красивый кварк (Ь–кварк) — самый тяжелый кварк с тем же зарядом, что у нижнего кварка (и тем же, что у среднего по массе странного) — исключение из правила. Причина в том, что красивый кварк живет достаточно долго и успевает пролететь некоторое расстояние до распада. При этом расстояние невелико: распад происходит внутри трекера. Действительно: если частицы распадаются практически мгновенно после рождения, поэтому создается впечатление, что продукты их распада начинают свои треки непосредственно в точке взаимодействия, где столкнулись протоны. Красивые кварки, в отличие от других, живут достаточно долго (примерно полторы пикосекунды; этого хватает, чтобы пройти со скоростью света, с которой они летают, примерно полмиллиметра), чтобы начать трек на вполне различимом расстоянии от точки взаимодействия. Внутренние кремниевые детекторы регистрируют этот смещенный узел траектории, как показано на рис. 43.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату