РИС. 42. Обобщенная картина того, как частицы Стандартной модели распознаются в детекторах. Нейтральные частицы не оставляют следа в трекерах. Как заряженные, так и нейтральные адроны могут оставлять некоторое количество энергии в ECAL, но большую часть энергии выделяют в HCAL. Мюоны пролетают насквозь до внешнего детектора
Когда экспериментаторы восстанавливают трек от распада красивого кварка, то в обратном направлении он не приходит в точку взаимодействия—центр события. Вместо этого создается впечатление, что трек начинается в той точке внутреннего трекера, где распался красивый кварк; в этой точке наблюдается перегиб — переход от траектории прилетевшего туда красивого кварка и улетевших дальше продуктов распада[47]. Благодаря тончайшей сегментации кремниевых детекторов экспериментаторы имеют возможность рассматривать область, прилегающую к пучку, очень подробно и в значительном числе случаев успешно распознавать красивые кварки.

РИС. 43. Адроны, «сделанные» из красивых кварков, живут достаточно долго, чтобы оставить видимый трек в детекторе, прежде чем рассыпаться на другие заряженные частицы. При этом в кремниевом детекторе может образоваться перегиб трека, по которому, собственно, и распознают красивые кварки. На рисунке показан распад истинных кварков
Еще один тип кварка, выделяющийся среди прочих в экспериментальном плане, —
Истинные кварки достаточно тяжелы, чтобы продукты их распада оставляли различимые треки. При распаде более легких кварков продукты распада, как и первоначальная частица, движутся со скоростями, очень близкими к скорости света, и потому сливаются как будто в единую струю, даже если начало ей положили две или более отдельные частицы. С другой стороны, истинные кварки, если только они не чрезмерно энергичны, наблюдаемо распадаются на красивые кварки и W–бозоны (заряженные слабые калибровочные бозоны); наличие того и другого наглядно свидетельствует о присутствии истинного кварка. Считается, что благодаря своей массе истинный кварк наиболее тесно взаимодействует с частицей Хиггса и другими частицами, вовлеченными в физику слабых взаимодействий, в которой мы надеемся в скором времени разобраться. Свойства истинных кварков и их взаимодействий могут оказаться полезны для понимания фундаментальных физических теорий, на которых основана Стандартная модель.
В ПОИСКАХ ПЕРЕНОСЧИКОВ СЛАБОГО ВЗАИМОДЕЙСТВИЯ
Прежде чем закончить разговор о том, как распознаются частицы Стандартной модели, рассмотрим последнюю их группу — слабые калибровочные бозоны: два W и один ?, переносящие слабое ядерное взаимодействие. Слабые калибровочные бозоны отличаются той особенностью, что, в отличие от фотонов и глюонов, имеют ненулевую массу покоя. Надо сказать, что наличие массы у слабых калибровочных бозонов — частиц, передающих слабое взаимодействие — представляет собой достаточно серьезную фундаментальную загадку. Происхождением своим эти массы — как и массы других элементарных частиц, о которых говорилось в этой главе — обязаны механизму Хиггса, к которому мы перейдем в самом ближайшем будущем.
Из?за своей тяжести W- и ?–бозоны долго не живут; они распадаются. Это значит, что слабые