Meredith может выждать четыре недели, а затем направить по электронной почте очередное сообщение.

На рис. 9.2 приведен пример индивидуализированной и таргетированной рекламы по электронной почте с учетом результатов модели. К предложению о подписке на журнал Better Homes and Gardens бесплатно прилагается книга рецептов блюд, приготовляемых на гриле. Эта таргетированная маркетинговая акция, основанная на аналитических моделях, привела к росту коэффициента отклика на предложение с 29 до 50 %. Если сравнить количество подписок после электронной рассылки с результатами предыдущего года (без моделирования таргетинга), то уровень отклика вырос на 20–40 %. Meredith в этом примере (см. рис. 9.2) использовала интересные показатели для дальнейшей сегментации. Иными словами, модели предрасположенности позволяли выбрать продукт, а затем подсказывали, какой бесплатный подарок лучше всего с ним сочетается. Например, если клиенты интересовались приготовлением еды, они получали выгодное предложение на покупку гриля. Те, кто интересовался обустройством дома, получали подарок, связанный с декорированием. То же относилось и к любителям садоводства. Meredith утверждает, что смогла добиться 15 %-ного роста за счет сегментированного предложения подарков (основанного на знании интересов той или иной группы клиентов) – и это не считая среднего 40 %-ного прироста конверсии вследствие применения моделей предрасположенности.

Эрин Хоскинс, директор компании Meredith по вопросам электронной торговли и онлайн-маркетинга, рассказала мне, с чего надо начинать работу и как важно иметь в команде хорошего аналитика:

Я как маркетер знала, что мы можем значительно повысить результативность массовой электронной рассылки. Когда я только пришла в компанию, у меня фактически не было бюджета, баз данных или инструментов для электронного маркетинга. Для начала я подружилась с Келли [Тэгтоу], в то время ведущим аналитиком компании. Когда мы только начинали работать вместе, я часто не понимала, о чем она говорит, но знала, что если нам удастся применить принципы анализа к нашей маркетинговой электронной рассылке, то успех нам обеспечен.

Рис. 9.2. Целевая реклама журнала Better Homes and Gardens с приложением бесплатной кулинарной книги

Источник: Meredith Corporation

Самой сложной задачей для Хоскинс стало проведение более подробной сегментации и таргетирования, связанных с бо?льшим количеством продуктов при тех же ресурсах. Этим делом занимались один человек в отделе маркетинга и один сотрудник производственного подразделения (причем не полный день). Однако у Meredith уже была хорошая инфраструктура для работы с данными. Раньше с маркетинговыми базами данных компании работали подрядчики, но руководство всегда признавало стратегическую важность данных и в какой-то момент решило, что эту работу могут выполнять и сотрудники Meredith. Данные о потребителях были сведены в новую корпоративную базу. Meredith собирала электронные адреса своих клиентов, однако не имела нужных инструментов для проведения целевых рассылок по электронной почте.

Келли Тэгтоу, директор Meredith по вопросам бизнес-аналитики, рассказала мне: «Данные для первых целевых кампаний мы собирали вручную – это отнимало много времени. Сначала было сложно. Однако мы доказали, что модели предрасположенности действительно эффективны, и результаты работы позволили оправдать инвестиции в инструменты автоматизированного маркетинга с использованием электронной почты». Эта инвестиция многократно окупилась за счет повышения коэффициента отклика и более чем 20 %-ного прироста количества подписок после получения письма.

Второй основной прием аналитического маркетинга: анализ потребительской корзины

Программа электронных рассылок Meredith – типичный пример использования регрессии для прогнозирования очередной покупки отдельными категориями клиентов с учетом их предыдущих приобретений и демографических характеристик. Такой поход носит название модели предрасположенности («лучшей альтернативы»). Другой распространенный метод – анализ потребительской корзины (он особенно актуален для ретейла). Он подразумевает определение набора продуктов (или услуг), которые потребители приобретают чаще всего. Этим подходом активно пользуется, например, компания Amazon.com – как на своем сайте, так и в электронных рассылках. Когда вы заходите на сайт Amazon как зарегистрированный пользователь, то видите в нижней части экрана обращение: «Вы смотрели [книгу или DVD-диск]. Возможно, вас также заинтересуют [другие книги или DVD]».

Для изучения потребительской корзины чаще всего используется техника сбора данных под названием «Кластерный анализ». В данном случае технические детали не так важны{48}. На основе такого анализа можно разработать практические рекомендации, называемые «ассоциативными правилами». Звучат они примерно так: «Клиенты, покупающие новый персональный компьютер, покупают и новый сетевой провод». Это ассоциативное правило позволяет сразу же перейти к практическим действиям: например, изменить ассортимент или маркетинговые программы. Хоскинс говорит так: «Не нужно бояться данных. Маркетеры часто полагаются на то, что кажется им интуитивно правильным. Однако после анализа картина может оказаться совершенно иной». Поэтому будьте готовы пересмотреть свои интуитивные убеждения и действовать на основе анализа.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату