открытиям, с каждым номером становится содержательнее журнал «Изобретатель и рационализатор». Начинают выходить занимательные и смелые книжки, пытающиеся учить изобретательскому творчеству.
Среди них особенно интересна и серьезна книга Н. Середы, выпущенная в 1961 году в Риге под скромным названием «Рабочий-изобретатель». Это конспект лекций по изобретательскому творчеству, читанных автором в столице Латвии. Как замечательно, что есть такой университет, где изобретатели получают нужные им знания! Как приятно, что преподавание в нем ведется так оригинально, на таком высоком уровне!
Книга Н. Середы, конечно, не решает всех задач, но ценна тем, что предостерегает от вульгаризации и упрощенчества. Классификация стадий изобретательского творчества представляется автору более сложной, чем всем писавшим до него. Он пытается спорить с теми, кто изображает творческий процесс изобретателя как прямое неуклонное восхождение по ступенькам стадий. Он рисует более гибкую систему с возвращениями к пройденному; в его схеме как бы пульсируют многочисленные линии «обратных связей». Мы не будем пересказывать содержательные рассуждения автора. Его книга конспективная, и составить ее конспект означало бы переписать всю книгу. Но, однако, мы не можем отказать себе в удовольствии привести как иллюстрацию заключительную схему, подытоживающую выводы лекций Н. Середы. Мы печатаем ее здесь с тайной надеждой, что читатель заинтересуется, прочитает книгу сам, согласится или поспорит с нею. И что автор, идя навстречу интересу читателя, развернет поподробнее свой конспект, подкрепит его конкретными примерами из истории техники, творческой практики сегодняшнего дня.
О других современных книжках, посвященных изобретательскому творчеству, мы расскажем ниже.
Все это опыты, но опыты, совершенно необходимые. Они ценны своими достижениями и даже своими ошибками потому, что разжигают полемику вокруг самых благородных областей человеческой деятельности. Ей-богу, даже самая никудышная книжка здесь полезней и заслуживает большей поддержки, чем стишок, разъясняющий вкус вина, или целый лирический цикл, агитирующий девиц на необдуманные поступки. Ну, а если книжка хорошая, способная увлечь воображение, ей цены нет!
В 1961 году одновременно в Москве и Тамбове вышли две очень похожие книжки бакинских авторов — Рафаила Бахтамова «Изгнание шестикрылого серафима» и Г. Альтшуллера «Как научиться изобретать», где содержится попытка проанализировать изобретательское творчество. Признаюсь, что обе книжки особенно симпатичны мне потому, что по форме и материалу кое в чем повторяют мою книжку «Секрет изобретателя», изданную в 1946 году. Но есть в них и достопримечательное, свое.
В «Секрете изобретателя», как и в этой более толстой книге, которую вы читаете, я старался показать, что изобретения бывает полезно иногда группировать не только по техническому и научному принципу, заложенному в их основе, но по логике их возникновения, по «мыслительным фигурам», создавшим и роднящим, казалось бы, самые непохожие изобретения. Это как бы обобщенные «типовые» пути, ведущие к техническим выдумкам. Не следует уподоблять их азбуке, из которой каждый младенец может составить слово, или даже фигурам классической хореографии, из которых нижет свой танец балерина. Скорее это фехтовальные фигуры мысли, ее просверки, повторяющиеся в вечно новом бою.
Мы группировали изобретения по нескольким принципам: «изобретения напрямик», то есть идеи, возникшие из прямого теоретического или опытного исследования; «изобретения со стороны», то есть идеи, возникшие путем перенесения из соседних областей науки и техники; «изобретения из прошлого», то есть идеи, возникшие путем возвращения на высшей ступени забытого изобретения; «изобретения-оборотни», то есть идеи, возникшие путем раскрытия противоположностей в самой машине. Мы показывали рождение полезного из «вредных явлений», рождения новых качеств при разделении частей машин и т. д. и т. п. Получилась как бы коллекция приемов, помогающая решать изобретательские задачи.
Книги Р. Бахтамова и Г. Альтшуллера иллюстрируют подобные приемы хорошими примерами из изобретательской практики и находчиво формулируют новые приемы. Повторяю, что книги эти похожи, но отличаются оттенками изложения, а иногда и характером примеров. Поэтому, составляя этот маленький реферат, я буду стараться цитировать обоих авторов.
«Чтобы сделать изобретение, — справедливо подмечает Р. Бахтамов, — иногда достаточно изменить среду, в которой работает машина».
И подтверждает вывод свежими убедительными примерами.
Яркий пример дает изобретение талантливого бакинского изобретателя Д. Кабанова, придумавшего ловушку для сбора нефти, растекшейся в море.
Задача, которую предстояло решить Д. Кабанову, формулировалась так: «Разработать устройство для сбора нефти, плавающей на водной поверхности». «Водная поверхность» — участок моря, площадью в сотни квадратных километров. Слой воды достигает десятков метров. «Нефть» — тонкая пленка, толщиной в миллиметры. «Устройство» должно быть простым и надежным.
«Ясно, — рассказывает Р. Бахтамов, — что лучше всего, чтобы нефть сама отрывалась от воды и собиралась в каком-нибудь резервуаре.
Что же ей мешает? Нетрудно понять. Нефть, как и всякое тело, имеет вес. Он-то и мешает ей подняться.
Почему? Нефть — легкая жидкость, и в воде она плавает. Но снаружи ее окружает воздушная среда, а воздух, как известно, гораздо легче и воды и нефти.
Теперь мы можем представить себе, при каких условиях нам удалось бы достичь идеального результата — отделить нефть от воды. Для этого нужно, чтобы над нефтью был не воздух, а жидкость, более тяжелая, чем нефть.
На первый взгляд кажется, что логика привела нас к абсурду. В самом деле, не можем же мы изменить состав земной атмосферы? И не просто изменить, а заменить обычную атмосферу жидкостью.
Но ведь и нет надобности заменять всю атмосферу. Достаточно сделать это в небольшом объеме.
Бачок для сбора нефти установлен на двух поплавках. От бачка отходит трубка, которая погружена в плавающую на воде нефть. В бачок заливается вода. Да, самая обыкновенная вода, хотя бы морская. Когда бак наполнен, его закрывают — теперь атмосферный воздух попасть в бак уже не сможет.
Откроем задвижку на трубке. Что произойдет? Если вы решили, что вода просто вытечет из бачка, то подумайте еще раз. Физические явления, с которыми мы здесь сталкиваемся, просты и знакомы каждому школьнику, а вот неожиданное использование их в нефтеловушке привело инженера Кабанова к замечательному изобретению.
Итак, мы открыли задвижку. Но вода из бачка не течет. Почему? Потому что иначе в бачке создалось бы разрежение, вакуум, ведь атмосферный воздух туда не поступает.
Так поведет себя вода. А нефть? Нефть, как известно, легче воды. Когда мы открыли кран, она оказалась как бы на дне водяного «колодца». Понятно, что нефть стремится всплыть. И, по мере того, как она начнет заполнять бачок, из него будет уходить вода…
Ну хорошо, скажет читатель, пусть нефть и поднимется в бачок. Но ведь ловушке придется пройти сотни километров, прежде чем она охватит всю площадь.
В том-то и дело, что нет! Нефть на поверхности воды образует сплошной слой одинаковой толщины. Если вы в каком-то месте прорвете этот слой, «рана» сейчас же затянется. Нефть из окружающих участков сразу же поспешит заполнить свободное пространство. Таким образом, ловушка может стоять на месте: нефть отовсюду будет стекаться к «воронке», толщина пленки на всей поверхности будет постепенно уменьшаться.
Практически более выгодно, чтобы ловушка медленно двигалась по бухте. Так сбор нефти идет гораздо скорее.
Когда бачок, укрепленный на поплавках, заполнен нефтью, задвижку закрывают и нефть перекачивают в другой резервуар (он может находиться и на берегу и на периодически подходящем к ловушке судне). Затем снова закачивают в бачок воду, и все начинается сначала-
Как видите, отделять нефть от воды нет надобности, она это делает сама, без всяких усилий с нашей стороны».
А вот несколько удачных примеров из книжки Г. Альтшуллера.
Но приводит удачные примеры его применения. Вот один из них.
«В конце прошлого века шведский изобретатель Лаваль, работая над усовершенствованием паровой турбины, столкнулся с почти непреодолимым затруднением. Ротор турбины делал тридцать тысяч оборотов в минуту. При такой скорости вращения необходимо очень точно уравновесить ротор, а этого Лавалю как раз и не удавалось добиться. Изобретатель увеличивал диаметр вала, делал вал все более жестким, но каждый раз при опытах машина начинала дрожать, и вал деформировался.
В конце концов поняв, что увеличивать жесткость вала далее невозможно, Лаваль решил проверить прямо противоположный путь. Массивный деревянный диск был насажен на… камышовый стебель. И вдруг оказалось, что податливый, гибкий вал при вращении уравновешивается сам собой! Лаваль отметил в записной книжке: «Опыт с камышом удался…»
Трудность состояла в том, чтобы достаточно простыми средствами предотвратить падение транспортируемого листа. Применим принцип «пусть случится». Допустим, лист уже упал. И что же? Разве нельзя транспортировать его именно в этом положении?.. Зачем листы поднимать, а потом опускать? Пусть все время движутся по земле — и они никогда не упадут».
Остроумные, верные наблюдения!
«Вот типичный пример.
С уменьшением содержания воды в бетонной смеси возрастает прочность готового бетона. Однако если содержание воды в бетоне низко, возникают затруднения в укладке бетона и в получении гладкой поверхности бетонного элемента. Таким образом, налицо типичное техническое противоречие: выигрывая в одном, мы неизбежно должны проиграть в другом.
Что же предложили изобретатели? Они сказали: не нужно уменьшать содержание воды в приготовляемом бетоне. Наоборот, бетон нужно готовить с избытком воды. А уже затем, после затворения, избыточную воду следует отсасывать с поверхности бетона посредством вакуумирования».
Впрочем, полезное правило «минус на минус дает плюс» подкрепляется здесь не самыми яркими примерами. Многие выразительные примеры дает, по-