Машины не умеют думать. И в ближайшее время они думать не будут. Они могут делать все более и более интересные вещи, но представление о том, что нам надо из-за них беспокоиться, законодательно регулировать их «мышление» или предоставлять им гражданские права, — это просто глупость.
Так и не ставшие реальностью обещания разработать «экспертные системы»[42] в 1980-х годах свели на нет серьезное финансирование, прежде выделявшееся на создание «виртуальных людей». Очень немногие специалисты работают сегодня в этой области. Но, если верить средствам массовой информации, мы должны очень сильно бояться.
Все мы смотрели слишком много фильмов.
Если вы работаете с искусственным интеллектом, то есть два пути. Первый: «Давайте скопируем человека». Второй: «Давайте сделаем очень быструю статистическую вычислительную модель». Пример второго подхода — старые шахматные программы, которые пытались «перевычислять» тех, против кого они играли, но у игроков-людей есть свои стратегии, а прогнозирование решений противника — тоже часть игры в шахматы. Когда метод «перевычисления» не сработал, специалисты по ИИ начали наблюдать за тем, что делают опытные игроки, и подражать их действиям. «Перевычисление» больше не в моде. Мы можем назвать оба этих метода «искусственным интеллектом», если захотим, но ни один не приведет к появлению машин, способных создать новое общество.
Стратегия «перевычисления» нам совсем не страшна, потому что компьютер в действительности понятия не имеет, что делает. Он может быстро что- то посчитать, не сознавая, что именно считает. Здесь есть алгоритмы подсчета — и всё. Что нам и продемонстрировал IBM Watson в Jeopardy!
Один из вопросов в Jeopardy! выглядел следующим образом: «Такой была анатомическая особенность американского гимнаста Джорджа Эйсера, который завоевал золотую медаль в упражнениях на параллельных брусьях в 1904 году».
Игрок-человек ответил, что у Эйсера не было руки (неверно). А Watson спросил: «Что такое нога?» Он тоже проиграл, поскольку не смог сказать, что ноги «не было».
Попробуйте поискать в Google «гимнаст Эйсер». Первой в выдаче будет «Википедия» с длинной статьей о нем. Watson зависит от Google. Если бы участники Jeopardy! имели право использовать Google, то справились бы лучше, чем компьютер[43]. Watson может перевести слово «анатомическая» в «часть тела» и знает названия частей тела. Однако ему неизвестно, что такое «особенность». Watson оказался не в курсе, что гимнаст без ноги — это довольно необычно. Если бы вопрос звучал так: «Что необычного было в Эйсере?», люди отлично справились бы с ответом. Watson же не нашел бы слова «необычного» в «Википедии», равно как не понял бы ни того, чем занимаются гимнасты, ни почему кому-то есть до этого дело. Попробуйте погуглить раздельно по словам «необычное» и «Эйсер» и посмотрите, что получится. Поисковый алгоритм не думает, он не делает ничего даже отдаленно похожего на мышление.
Если бы мы поинтересовались у Watson, почему человек с ограниченными возможностями выступает на Олимпийских играх, то компьютер вообще не понял бы, что у него спрашивают. Он не понял бы вопроса, не говоря уже о том, чтобы найти ответ. Перемалывание чисел может дать вам только числовой результат. Интеллект, искусственный или какой-то другой, требует знания того, почему что-то происходит и какие эмоции это вызывает, а также способности предсказать возможные последствия определенных действий. Watson такого не умеет. Мышление и поиск в тексте — не одно и то же.
Человеческий разум сложен. Те из нас, кому по душе стратегия «давайте скопируем людей», проводят много времени за размышлениями о том, на что мы способны. Многие ученые рассуждают об этом, но вообще-то нам почти неизвестно, как работает разум. Специалисты по искусственному интеллекту пытаются создать модели тех частей, которые мы понимаем. О том, как обрабатывается язык или как устроены механизмы обучения, мы кое-что уже выяснили, а вот о сознании или работе памяти — почти ничего.
Вот вам пример: я работаю над компьютером, который имитирует то, как организована память человека. Я хочу создать компьютер, который мог бы, подобно настоящему другу, рассказать вам нужную историю в нужный момент. Для этого мы с коллегами собрали тысячи историй в видеоформате — о защите, об исследовании лекарственных препаратов, о медицине, о программировании и т. д. Когда кто-то пытается что-то сделать или о чем-то узнать, наша программа может завести разговор и рассказать вспомнившуюся ей историю. Это искусственный интеллект? Конечно, да. Это мыслящий компьютер? Не совсем.
Почему нет?
Чтобы выполнить нашу задачу, мы должны опросить экспертов, а затем проиндексировать смысл рассказанных ими историй согласно идеям, которые они высказывают и опровергают, целям, о достижении которых говорят, и проблемам, которые они испытывали при достижении этих целей. Такое способны проделать только люди. Машина может сопоставить один индекс с другими, например с теми, которые можно найти в какой-то еще истории, имеющейся в компьютере, с индексами пользовательских запросов или с данными анализа ситуации, в которой, как известно машине, находится пользователь в данный момент. Компьютер может вспомнить очень хорошую историю в самый подходящий момент. Но он, конечно, не знает, о чем говорит. Он просто способен найти лучшую историю для конкретной ситуации.
Это искусственный интеллект? Я думаю, что да. Повторяет ли он то, как люди индексируют истории в своей памяти? Мы долго изучали, как они это делают, и думаем, что наш компьютер умеет так же. Надо ли нам опасаться такой «разумной» машины?
Вот тут я перестаю понимать тех, кто боится искусственного интеллекта. В том, что мы можем сделать, нет ничего угрожающего. Если бы мы на самом