Объединение множеств

Продолжим наши мысленные опыты и перекрасим оба круга в серый цвет. Будем считать их теперь одной фигурой, разорванной на части.

Рис. 81 – Объединение непересекающихся множеств G = B + W

Так мы получили новое множество, представляющее сумму или объединение двух предыдущих. Обозначим это новое множество буквой G (от Gray – «серый») и выразим то, что сделали, формулой.

G = B + W

Очевидно, что число точек во вновь образованном множестве равно их сумме в двух исходных. Пока в этом нет ничего интересного, – ведь исходные множества B и W, как говорят математики, не пересекаются. Сблизим круги так, чтобы добиться их частичного перекрытия (рис. 82).

Рис.82 – Объединение пересекающихся множеств G < B + W

Теперь количество точек в объединенном множестве будет меньше, чем в двух исходных по отдельности.

G < B + W

В общем случае при объединении множеств (как пересекающихся, так и не пересекающихся) соблюдается правило.

G ≤ B + W

Пересечение множеств

Иногда математиков (и не только их) интересует область пересечения множеств, отметим её серым цветом (рис. 83).

Рис.83 – Пересечение множеств G = B * W

Операцию пересечения множеств обозначают знаком умножения.

G = B • W

Количество точек в пересечении, как понимаете, не может быть больше, чем в любом из исходных множеств B и W. Для этого случая справедливо утверждение: пересечение множеств не больше любого из них.

B • W ≤ B и B • W ≤ W

Вычитание множеств

О солнечных и лунных затмениях слышали все, а кто-то и наблюдал их. Для математика это зримые примеры вычитания множеств; взгляните на рис. 84 – чем не затмения? Серую область можно трактовать как результат вычитания одного круга из другого. На левом рисунке белый круг «отгрыз» часть черного, превратив его в серую область, а на правом – наоборот. Подобающие этим случаям формулы будут таковы.

G = B – W или G = W – B

Рис.84 – Вычитание множеств

А если вычитаемый круг окажется больше того, из которого вычитают, и полностью поглотит его? В алгебре разность получится отрицательной, а здесь? Ничего подобного! При вычитании большего множества из меньшего или равного ему получается пустое множество, оно обозначается символом Ø. Из пустого множества тоже можно вычитать, и результатом опять будет пустое множество.

(B – B) – B = Ø

(Ø – W) – B = Ø

Вот такими интересными свойствами обладают множества!

Подмножества и надмножества

На рис. 85 белый круг полностью поглощен черным. Тогда говорят, что множество точек белого круга составляет подмножество точек черного. Или так: множество точек черного круга является надмножеством точек белого. Математик выразит это формулой:

B > W

Вы читаете Песни о Паскале
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату