Рис.85 Надмножество (B) и подмножество (W)

А если круги совпадают и полностью перекрывают друг друга? Тогда говорят, что множества равны, и любое из них является и подмножеством, и надмножеством другого. В общем случае:

если B ≥ W, то B является надмножеством W;

если B ≤ W, то B является подмножеством W.

Числовые множества

Мы рассмотрели несметные множества бесконечно маленьких точек. Но компьютеры ещё не умеют работать с бесконечностями. Так умерим свой аппетит и перейдем к множествам с конечным числом элементов. Поступим так: вместо раскраски кругов расставим на них ряд жирных точек и пронумеруем их числами от 1 до 9 (рис. 86). В ходе последующих опытов нас будут интересовать лишь эти избранные точки (то есть, числа).

Рис.86 – Множества чисел

Так мы получили два конечных множества чисел. Одно из них, обозначенное буквой A, содержит числа 8, 7, 9, 3, 5, 2. Другое обозначено буквой B и включает числа 5, 4, 6, 1, 2. Эти множества математики записали бы так:

A = { 8, 7, 9, 3, 5, 2 }

B = { 5, 4, 6, 1, 2 }

Для записи множеств они используют фигурные скобки. Обратите внимание: числа в скобках следуют в произвольном порядке. Это значит, что порядок перечисления элементов множества не важен. Учтите также, что числа 2 и 5 входят в оба множества.

Подобно точкам на круге, каждый элемент числового множества уникален, иными словами, может входить в множество лишь единожды. Вспомните нашу попытку покрасить углем черный круг, – добавление к множеству существующих в нём элементов не изменяет его. Этим же свойством обладают и числовые множества. Например, для нашего случая справедливо следующее.

A + { 8, 7 } = A

Множество A после объединения с множеством {8,7} не изменилось, поскольку уже содержало эти числа.

С числовыми множествами поступают так же, как и с бесконечными: объединяют, пересекают, вычитают и сравнивают. Вот примеры этих операций для нашего случая.

Объединение множеств содержит все числа исходных множеств, при этом повторения (дубликаты) отбрасывают:

G = A + B = { 8, 7, 9, 3, 5, 2 } + { 5, 4, 6, 1, 2 } = { 8, 7, 9, 3, 5, 2, 4, 6, 1 }

Хотя числа 2 и 5 входили в оба исходных множества, в объединении они встречаются по разу.

Пересечение множеств содержит только числа, входящие в оба множества:

A * B = { 8, 7, 9, 3, 5, 2 } * { 5, 4, 6, 1, 2 } = { 5, 2 }

Разность множеств A–B содержит числа, состоящие в множестве A, но отсутствующие в множестве B:

A – B = { 8, 7, 9, 3, 5, 2 } – { 5, 4, 6, 1, 2 } = { 8, 7, 9, 3 }

Разность множеств B–A содержит числа, состоящие в множестве B, но отсутствующие в множестве A:

B – A = { 5, 4, 6, 1, 2 } – { 8, 7, 9, 3, 5, 2 } = { 4, 6, 1 }

Эти «вычисления» легко проверить по рис. 86.

Мощность множества, полные и неполные множества

Мощность множества – это наибольшее количество элементов, которое может содержаться в нём. В нашем числовом примере мощность множества равна девяти.

Множество, содержащее все возможные свои элементы, называют полным. В нашем случае полным является объединение множеств A+B.

Множество, содержащее не все возможные элементы, является неполным. Так, множества A и B по отдельности – неполные.

Все это рассказал нам математик. А что же Семен Семенович, или мы забыли о директоре? Нет, конечно, но к директорской задаче мы вернемся после ознакомления с «паскалевскими» множествами.

Итоги

• Множество – это совокупность различимых объектов (точек, чисел, предметов), которую мы воспринимаем как нечто целое. Отдельные объекты множества называют его элементами.

Вы читаете Песни о Паскале
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату