приращения абсциссы и ординаты имеют между собою то же отношение, как подкасательная и ордината. С целью получить подобные треугольники дуга, составляющая наряду с двумя приращениями третью сторону того треугольника, который справедливо назывался когда-то характеристическим треугольником, рассматривается как прямая линия, как часть касательной, и потому одно из приращений — как доходящее до касательной. Эти допущения поднимают, с одной стороны, вышеуказанные определения выше природы конечных величин; но, с другой стороны, здесь применяется к моментам, называемым теперь бесконечными, такой прием, который значим лишь относительно конечных величин и при котором мы не имеем права чем-либо пренебрегать на основании его незначительности. Затруднение, тяготеющее над методом, остается при таком образе действия во всей своей силе.
Здесь мы должны указать на замечательный прием Ньютона (Princ. Mathem. phil. nat., lib. II, Lemma II, после propos. VII) — на изобретенный им остроумный кунштюк для устранения арифметически неправильного отбрасывания произведений бесконечно малых разностей или высших порядков этих последних при нахождении диференциалов. Он находит диференциал произведения, — из которого легко затем вывести диференциалы частного, степени и т. п. — следующим образом. Произведение, если уменьшить x и y, каждый порознь на половину его бесконечной разности, переходит в
, а если увеличить x и y ровно настолько же, то произведение переходит в
. Если от этого второго произведения отнять первое, то получается разность
, которая есть избыток приращения на целые dx и dy, так как на это приращение отличаются оба произведения; следовательно, это и есть диференциал
. — Как видим, при этом приеме сам собою отпадает член, представлявший главное затруднение, произведение двух бесконечных разностей
. Но, несмотря на имя Ньютона, следует сказать, что это, хотя и весьма элементарное, действие неправильно; неправильно, что
.
Только потребность обосновать ввиду его важности исчисление флюксий могла заставить такого математика, как Ньютон, обмануть себя подобным способом доказательства.
Другие формы, которыми пользуется Ньютон при выводе диференциала, связаны с конкретными, относящимися к движению значениями элементов и их степеней. — При употреблении формы ряда, которое вообще характерно для его метода, слишком напрашивается сказать, что мы всегда имеем возможность путем прибавления дальнейших членов взять величину с той степенью точности, которая нам нужна, и что отброшенные величины относительно незначительны, что вообще результат есть лишь приближение; и он здесь также удовлетворился этим основанием, подобно тому, как он в своем методе решения уравнений высших степеней путем приближения отбрасывает высшие степени, получающиеся при подстановке в данное уравнение каждого найденного еще неточного значения, на том же грубом основании, что они малы; см. Lagrange, Equations Numeriques, р. 125.
Ошибка, в которую впал Ньютон, разрешая задачу путем отбрасывания существенных высших степеней, ошибка, которая дала повод противникам торжествовать победу своего метода над его методом и истинный источник которой обнаружил Лагранж в своем новейшем ее рассмотрении (Theorie des fonct. analyt., 3-me р., ch. IV), доказывает, что употребление этого орудия еще страдало формализмом и неуверенностью. Лагранж показывает, что Ньютон впал в свою ошибку вследствие того, что он пренебрегал членом ряда, содержащим ту степень, которая была важна для данной задачи. Ньютон придерживался формального, поверхностного принципа отбрасывания членов ввиду их относительной малости. — А именно, известно, что в механике членам ряда, в который разлагается функция какого-нибудь движения, придается определенное значение, так что первый член или первая функция относится к моменту скорости, вторая — к силе ускорения, а третья — к сопротивлению сил. Поэтому члены ряда должны рассматриваться здесь не только как части некоторой суммы, но как качественные моменты некоторого целостного понятия. Благодаря этому отбрасывание остальных членов, принадлежащих дурно бесконечному ряду, имеет смысл, совершенно отличный от отбрасывания их на основании их относительной малости [15]. Разрешение проблемы, данное Ньютоном, оказалось ошибочным не потому, что в нем не принимаются во внимание члены ряда лишь как части некоторой суммы, а потому, что не принимается во внимание член, содержащий то качественное определение, в котором было все дело.
В этом примере качественный смысл есть то, от чего ставится в зависимость прием. В связи с этим мы можем тотчас же выставить общее утверждение, что все затруднение касательно самого принципа было бы устранено, если бы вместо формализма, состоящего в том, что определение диференциала усматривают лишь в дающей ему это имя задаче, т. е. в различии вообще некоторой функции от ее изменения после того, как ее переменная величина получила некоторое приращение, — если бы вместо этого формализма было указано качественное значение принципа и действие было бы поставлено в зависимость от этого качественного значений. В этом смысле диференциал от
оказывается вполне исчерпанным первым членом ряда, получающегося путем разложения выражения
. Что прочие члены не принимаются во внимание, проистекает, таким образом, не из их относительной малости; здесь не предполагается никакой такой неточности, погрешности или ошибки,