сделанному допущению увеличиваются две переменные величины, соединенные в одном уравнении, из коих одна рассматривается как функция другой; приращение берется здесь вообще неопределенным, и постольку о бесконечно-малом нет еще и речи. Но прежде всего путь, которым отыскивается этот предел, приводит к тем же непоследовательностям, которые имеются в других методах. Этот путь именно таков. Если
, то при переходе
в
должна переходить в
и т. д. Следовательно,
и т. д., и
и т. д. Если теперь k и h исчезают, то исчезает и второй член ряда кроме p, каковое p и оказывается пределом отношения этих двух приращений. Отсюда видно, что h как определенное количество полагается = 0, но что вследствие этого
еще не обращается вместе с тем в
, а остается некоторым отношением. И вот представление предела должно доставить ту выгоду, что оно устранит заключающуюся в этом непоследовательность; p должно вместе с тем быть не действительным отношением, которое было бы
, а лишь тем определенным значением, к которому отношение может приближаться бесконечно, т. е. так, чтобы разность могла стать меньше всякой данной разности. Более определенный смысл приближения касательно того, что собственно должно сближаться между собою, будет рассмотрен ниже. — Но что количественное различие, определяемое не только как могущее, но и как долженствующее быть менее всякой данной величины, уже больше не есть количественное различие, это само собою ясно; это так же очевидно, как только что-нибудь может быть очевидным в математике; но этим мы не пошли дальше
. Напротив, если
, т. е. принимается за некоторое определенное количественное отношение, как это и есть на самом деле, то, наоборот, получается затруднение для предположения, что
, предположения, единственно путем которого и получается
. Если же согласиться, что
— и в самом деле, раз
, то само собою k также делается
, ибо приращение k к у имеет место лишь при условии существования приращения h, — то надо было бы спросить, что представляет собою p, которое есть некоторое совершенно определенное количественное значение. На этот вопрос сразу же получается простой, сухой ответ, гласящий, что оно есть коэфициент, и нам указывают, путем какого вывода он возникает, — известным определенным образом выведенная первая производная функция некоторой первоначальной функции. Если удовольствоваться этим ответом, как и в самом деле Лагранж по существу дела удовольствовался им, то общая теория науки диференциального исчисления и непосредственно сама та одна форма, которая называется теорией пределов, освободилась бы от приращений, а затем и от их бесконечной или какой угодно малости, от трудности, состоящей в том, что кроме первого члена или, вернее, лишь коэфициента первого члена, все остальные члены ряда, которые неминуемо появляются благодаря введению этих приращений, снова устраняются; да помимо этого она очистилась бы также и от всего связанного с этим дальнейшего, от формальных категорий прежде всего бесконечного, бесконечного приближения, а затем и от дальнейших здесь столь же пустых категорий непрерывной величины [16] и всех еще других, которые считается нужным ввести, как например, стремление, становление, повод к изменению. Но в таком случае требовалось бы показать, какое еще значение и ценность, т. е. какую связь и какое употребление для дальнейших математических целей имеет p помимо того, для теории совершенно достаточного сухого определения, что оно есть не что иное, как полученная путем разложения бинома производная функция; об этом будет сказано во втором примечании. — Здесь же мы ближайшим образом дадим разбор той путаницы, которую вышеприведенное столь обычное в изложениях употребление представления о приближении внесло в понимание собственной, качественной определенности того отношения, в котором было ближайшим образом все дело.
Мы показали, что так называемые бесконечно малые разности выражают собою исчезание членов отношения как определенных количеств и что то, что после этого остается, есть их количественное отношение, исключительно лишь поскольку оно определено качественным образом; качественное отношение здесь настолько не теряется, что оно скорее есть именно то, что получается благодаря превращению конечных величин в бесконечные. В этом, как мы видели, состоит вся суть дела. — Так например, в последнем отношении исчезает определенные количества абсциссы и ординаты. Но члены этого отношения остаются по существу один — элементом ординаты, а другой — элементом абсциссы. Так как здесь применяют обычный способ представления, состоящий в том, что одна ордината бесконечно приближается к другой, то одна ордината, раньше отличная от другой ординаты, переходит в последнюю, а раньше различная абсцисса переходит в другую абсциссу; но ордината по существу не переходит в абсциссу и абсцисса не переходит в ординату. Оставаясь и далее в рамках этого примера переменных величин, следует сказать, что элемент ординаты должен быть понимаем не как отличие одной ординаты от другой ординаты, а как отличие или качественное определение величины относительно элемента абсциссы; принцип одной переменной величины и принцип другой находятся во взаимном отношении между собой. Различие, не будучи уже больше различием конечных величин, перестало быть многообразным внутри самого себя, оно сжалось в простую интенсивность, в определенность одного качественного момента отношения относительно другого.