приращение; однако следует различать способ, каким оно вводится для только что указанной цели, и разложение функции по этому приращению от вышеупомянутого употребления приращения для нахождения диференциального уравнения и для характеристического треугольника. Употребление, сделанное здесь, правомерно и необходимо; оно входит в круг геометрии, так как геометрическое определение касательной как таковой требует, чтобы между нею и кривой, с которой она имеет одну общую точку, не могло быть другой прямой линии, также проходящей через эту точку. Ибо с принятием этого определения качество касательной или не-касательной сводится к различию по величине, и касательной оказывается та линия, на которую приходится исключительно с точки зрения того определения, которое здесь важно, наибольшая малость. Эта, на первый взгляд, лишь относительная малость не содержит в себе ничего эмпирического, т. е. ничего зависящего от определенного количества как такового; она положена качественно природой формулы, если различие того момента, от которого находится в зависимости долженствующая быть сравниваемой величина, есть различие степени; так как последнее сводится к i и i2 и так как i, которое ведь в конце концов должно означать некоторое число, следует представлять затем как дробь, то i2 само по себе меньше, чем i, так что даже представление, что можно приписывать i любую величину, здесь излишне и даже неуместно. Именно поэтому доказательство большей малости не имеет ничего общего с бесконечно малым, и последнее следовательно отнюдь не должно появляться здесь.

Хотя бы только за его красоту и за ныне скорее забытую, но вполне заслуженную славу, которой он пользовался, я хочу здесь еще сказать о декартовом методе касательных; он, впрочем, имеет также отношение к природе уравнений, о которой мы должны будем затем сделать еще дальнейшее замечание. Декарт излагает этот самостоятельный метод, в котором требуемое линейное определение также находится из той же производной функции, в своей и в других отношениях оказавшейся столь плодотворной геометрии (Oeuvres compl. ed. Cousin, tom. V, liv. II, p. 357 ss.), уча в ней о великой основе природы уравнений и их геометрического построения, а тем самым об очень расширенном анализе, о распространении его на геометрию вообще. Проблема получает у него форму задачи — провести прямые линии перпендикулярно к любому месту кривой, чем определяется подкасательная, и т. д. Мы вполне понимаем то чувство удовлетворения по поводу своего открытия, касавшегося предмета всеобщего научного интереса того времени и являвшегося всецело геометрическим, тем самым поднимавшегося так высоко над вышеупомянутыми методами голых правил, которые давались его соперникам, — то чувство, которое он выразил там в следующих словах: «J'ose dire, que c'est ceci le probleme le plus utile et le plus general, non seulement que je sache, mais meme que j'aie jamais desire de savoir en geometrie». («Я осмеливаюсь сказать, что это — самая полезная и самая всеобщая геометрическая задача не только из всех тех, которые я знаю, но также и из всех тех, которые я когда-либо желал знать в геометрии»). — Для решения этой задачи он кладет в основание аналитическое уравнение прямоугольного треугольника, образуемого ординатой той точки кривой, к которой должна быть перпендикулярной требуемая в задаче прямая линия, затем ею же самой, нормальной, и, в-третьих, поднормальною, т. е. той частью оси, которая отрезывается ординатою и нормальною. Из известного уравнения кривой в уравнение означенного треугольника подставляется затем значение ординаты или абсциссы; таким образом получается уравнение второй степени (и Декарт показывает, как и те кривые, уравнения которых содержат высшие степени, также сводятся к уравнению второй степени), в котором встречается лишь одна из переменных величин и притом в квадрате и в первой степени, — квадратное уравнение, которое сначала выступает как так называемое нечистое уравнение. Затем Декарт соображает, что если мы представим себе рассматриваемую точку кривой точкой пересечения последней и круга, то этот круг пересечет кривую еще в другой точке и тогда получается для двух тем самым возникающих и неодинаковых x два уравнения с одинаковыми константами и одинаковой формы или же одно уравнение с неодинаковыми значениями x. Но уравнение делается одним уравнением лишь для одного треугольника, в котором гипотенуза перпендикулярна к кривой, т. е. оказывается нормальной, что представляют себе таким образом, что заставляют совпасть обе точки пересечения кривой кругом, и, следовательно, последний становится касающимся кривой. Но тем самым отпадает также и то обстоятельство, что корни x или y квадратного уравнения неодинаковы. В квадратном же уравнении с двумя одинаковыми корнями коэфициент члена, содержащего неизвестные в первой степени, вдвое больше лишь одного корня; это дает нам уравнение, посредством которого мы находим искомые определения. Этот ход решения должен быть признан гениальным приемом истинно аналитической головы, с которым не может сравниться принимаемая всецело ассерторически пропорциональность подкасательной и ординаты якобы бесконечно малым (так называемым) приращениям абсциссы и ординаты.

Полученное этим путем конечное уравнение, в котором коэфициент второго члена квадратного уравнения равен удвоенному корню или неизвестному, есть то же самое уравнение, которое находят посредством приема, применяемого диференциальным исчислением. Уравнение после его диференцирования дает новое уравнение ; а уравнение дает . Но при этом напрашивается замечание, что отнюдь не само собою разумеется, что такое производное уравнение также и правильно. При уравнении с двумя переменными величинами, которые от того, что они переменные, все-таки не теряют характера неизвестных величин, получается, как мы указали выше, лишь некоторое отношение, по тому указанному простому основанию, что замещение самих степеней функциями возвышения в степень изменяет значение обоих членов уравнения, и само по себе еще неизвестно, имеет ли еще место между ними уравнение при таком измененном значении. Уравнение ничего другого вовсе и не выражает, кроме того, что P есть некоторое отношение, и не надо приписывать никакого другого

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату