похожего. В водном мире, каким была Земля 4 млрд лет назад, источник энергии должен был обеспечивать полимеризацию длинноцепочечных молекул. В ходе полимеризации при образовании каждой связи отщепляется одна молекула воды (
Итак, репликация, углерод и энергия: три из шести факторов. А что насчет отделения от внешней среды? Это также связано с концентрированием. Биологические мембраны состоят из липидов, а те, в свою очередь, – из жирных кислот или изопреноидов (которые присоединяются к глицериновой головке). Когда концентрация жирных кислот превышает пороговое значение, они самопроизвольно формируют везикулы, похожие на клетки и способные расти и делиться, если их “подкармливать” новыми жирными кислотами. Чтобы обеспечить образование жирных кислот, требуется непрерывный приток органического углерода и энергии. А чтобы жирные кислоты (или нуклеотиды) накапливались быстрее, чем они рассеиваются, нужно обеспечить локальное повышение их концентрации с помощью каких-либо физических процессов или за счет природной компартментализации, чтобы сделать возможным формирование более крупных структур. В этих условиях формирование везикул вовсе не является таинством: это наиболее физически стабильное состояние, при котором общая энтропия повышается. (См. предыдущую главу.)
Если активированные “строительные блоки” поступают непрерывно, то простые везикулы будут расти и делиться самопроизвольно, в соответствии с оптимальным соотношением площади поверхности и объема. Представьте шарообразную везикулу – простую “клетку” с разнообразными органическими молекулами внутри. Везикула растет, встраивая в мембрану новые липиды и забирая в свою полость органические вещества. Теперь представим, что она вдвое увеличилась в размерах: вдвое увеличилась поверхность мембраны и вдвое возрос объем органических веществ внутри. Что при этом происходит? Если площадь поверхности возрастает вдвое, объем увеличивается более чем вдвое: площадь поверхности возрастает как квадрат радиуса, а объем – как его куб. Если скорость накопления содержимого клетки не будет выше, чем скорость увеличения площади поверхности, везикула превратится в нечто вроде гантели, а это уже на полпути к формированию двух новых везикул. Иными словами, арифметический рост приносит нестабильность, которая с большей вероятностью приведет к делению и удвоению, а не к дальнейшему увеличению везикулы. Вопрос лишь в том, сколько времени пройдет до того, как растущая везикула разделится на меньшие пузырьки. Так, непрерывный приток органических углеродных предшественников приводит не только к образованию примитивных клеток, но и к зачаточной форме клеточного деления. Кстати, этим путем – почкованием – делятся
Из-за проблемы соотношения площади поверхности и объема размер клетки ограничен. Это связано просто с поступлением реагентов и выведением отходов. Ницше сказал, что “брюхо служит причиной того, что человеку не так-то легко возомнить себя Богом”. На самом деле экскреция – это термодинамическая необходимость, от которой не смогли бы уклониться и божественные создания. Чтобы любая реакция могла протекать в прямом направлении, ее конечные продукты должны удаляться. Это не более загадочно, чем поведение людей на железнодорожной станции. Если уезжающие не смогут садиться в поезд с той же скоростью, с какой прибывают новые пассажиры, образуется толпа. В случае клеток скорость образования белков зависит от скорости поступления активированных предшественников (активированных аминокислот) и удаления отходов (метана, воды, CO2, этанола – всего, что может образоваться в реакции с выделением энергии). Если отходы не будут физически удаляться из клетки, это помешает протеканию прямой реакции.
Это еще один фундаментальный недостаток концепции “первичного бульона”, в котором плавают и реагенты, и отходы. Этот “бульон” не способен дать никакого импульса, никакой движущей силы, инициирующей новые химические процессы[44]. И чем больше становится клетка, тем больше она похожа на бульон. Из-за того, что объем клетки возрастает быстрее, чем площадь ее поверхности, относительная скорость поступления углерода и удаления отходов через внешнюю мембрану по мере увеличения объема клетки должна падать. Клетка размером даже с футбольный мяч не сможет функционировать: это будет просто “бульон”. (Конечно, страусиное яйцо по размеру почти с мяч, однако желточный мешок – это просто запас пищи. Зародыш гораздо меньше.) На заре возникновения жизни природные скорости поступления углерода и удаления отходов должны были обусловливать небольшой объем клеток. Похоже, была необходима также некая разновидность физической канализации.
Это подводит нас к вопросу о необходимости катализаторов. Сейчас живые организмы пользуются белковыми катализаторами – ферментами, но РНК также может иметь некоторую каталитическую активность. Проблема в том, что РНК – уже довольно сложный полимер. Она состоит из многочисленных “строительных блоков” – нуклеотидов, и каждый нужно сначала синтезировать, активировать, а после соединить их в длинную цепь. До этого момента РНК едва ли способна выступать катализатором. Какой бы процесс ни дал начало РНК, сначала он должен был инициировать образование других, более простых органических молекул – главным образом аминокислот и жирных кислот. Получается, древний “РНК-мир” в любом случае был загрязнен многими другими