сероводород, выделяющийся из “курильщиков”. Именно сероводород является главной причиной неравновесного состояния в “черных курильщиках”: сероводород – восстановленное соединение, поэтому он реагирует с кислородом с выделением энергии. Вспомните механизм дыхания, описанный в предыдущей главе. Бактерии используют сероводород как донор электронов, кислород как акцептор электронов, а выделяющуюся энергию тратят на синтез АТФ. Но ведь кислород – побочный продукт оксигенного фотосинтеза, и до его появления на Земле кислорода быть не могло. Так что бурное развитие жизни вокруг “черных курильщиков” полностью, хотя и не непосредственно, зависит от солнечного света. Четыре миллиарда лет назад подводные гидротермальные источники выглядели совсем иначе.

Что останется, если убрать кислород? “Черные курильщики” возникают при прямом контакте морской воды с магмой в спрединговых зонах срединно- океанических хребтов или в других вулканически активных местах. Через океанское дно вода просачивается в вулканические камеры, которые залегают неглубоко под поверхностью дна. В них вода мгновенно нагревается до нескольких сотен градусов, насыщается растворенными сульфидами металлов и становится сильнокислой. Когда перегретая вода под давлением прорывается через дно, она резко охлаждается и растворенные в ней сульфиды железа, например пирит (“золото дураков”), сразу же кристаллизуются. Взвесь сульфидов железа образует тот самый черный “дым”. Четыре миллиарда лет назад “черные курильщики” были устроены почти так же – кроме того, что они были совершенно непригодными для жизни. Ведь жизнь целиком зависит от химического потенциала. Он обеспечивается наличием кислорода, а его тогда не было. Сероводород очень тяжело заставить реагировать с CO2 с образованием органики, особенно при высоких температурах. Но один революционер от науки, немецкий химик, патентный поверенный Гюнтер Вехтерсхойзер решил доказать, что на самом деле все не так, и весьма в этом преуспел[46]. С конца 80-х годов Вехтерсхойзер опубликовал ряд новаторских статей, в которых очень подробно описал путь восстановления CO2 до органических молекул на поверхности сульфидов железа. Этот процесс он назвал пиритным пуллингом. Вехтерсхойзер говорил о “железосерном мире”, в котором железосерные минералы (FeS) катализируют образование органических молекул. По своей структуре такие минералы представляют собой кристаллы, собранные из повторяющихся ячеек из ионов двухвалентного железа (Fe2+) и сульфид-ионов (S2–). Крошечные неорганические кластеры из ионов Fe2+ и S2–, известные как железосерные кластеры, до сих пор выполняют ключевые функции во многих ферментах, в том числе участвующих в дыхании. Структура железосерных кластеров идентична кристаллической структуре минералов сульфида железа (FeS), например макинавита и грейгита (рис. 8, 11). Такие минералы могли катализировать реакции на заре возникновения жизни. Но, несмотря на то, что железосерные минералы – прекрасные катализаторы, Вехтерсхойзер экспериментально доказал, что гипотеза пиритного пуллинга в своем первоначальном виде не работает. Только взяв более реакционноспособный монооксид углерода (CO), Вехтерсхойзеру удалось синтезировать органические молекулы. И тот факт, что неизвестны организмы, способные расти за счет пиритного пуллинга, подтверждает, что дело не в неудачных экспериментах: идея и в самом деле плоха.

Рис. 11. Железосерные минералы и железосерные кластеры.

Близкое сходство железосерных минералов и железосерных кластеров, входящих в состав современных ферментов (Russell and Martin 2004). В центре показана повторяющаяся кристаллическая структурная единица грейгита (эти единицы в совокупности образуют решетку). Справа и слева – железосерные кластеры в составе белков. Их структура напоминает структуры грейгита и сходных минералов, например макинавита. Закрашенные области отражают форму и размер названных белков. Изображенные белки, как правило, содержат несколько железосерных кластеров (с никелем или без него).

В жерлах “черных курильщиков” содержится и CO, но его концентрация ничтожно мала, так что органическую химию так не построить. (Концентрация CO в “черных курильщиках” в 1–1000 тыс. раз ниже, чем CO2.) Есть и другая проблема. Внутри “черных курильщиков” чрезвычайно горячо: температура воды в жерле достигает 250–400 °C, но на большой глубине она не кипит из-за высокого давления. При такой температуре CO2 – самое стабильное углеродное соединение. Это означает, что синтез органических веществ в этих условиях не может осуществляться: любая синтезированная органика будет быстро разрушена и снова превратится в CO2. Предположение, что органические реакции могут протекать на поверхности минералов, также сомнительно. Если органические молекулы будут оставаться связанными с поверхностью минералов, их образование в конце концов остановится. Если же молекулы будут диссоциировать, их сразу смоет в океан, и синтез органики в прямом смысле вылетит в трубу. “Черные курильщики” еще и очень недолговечны, период их существования исчисляется десятками лет – слишком мало для зарождения жизни. Хотя “черные курильщики” представляют собой неравновесные диссипативные структуры и с их помощью можно разрешить некоторые проблемы гипотезы “первичного бульона”, их нестабильность и жесткие условия препятствуют синтезу хрупких органических соединений, необходимых для развития жизни. Но все же “черные курильщики” сыграли в этом процессе очень важную роль: насытили воды древнего океана важными для катализа ионами металлов, например железа и никеля, выщелоченных из магмы.

Преимуществами этих ионов могли пользоваться подводные источники и другого типа – щелочные гидротермальные источники (рис. 12). На мой взгляд, эти источники позволяют решить все проблемы, которые возникали с происхождением жизни в “черных курильщиках”. Щелочные гидротермальные источники, в отличие от “черных курильщиков”, образуются не из-за вулканической активности (и поэтому выглядят не столь впечатляюще), но на роль потоковых электрохимических реакторов подходят гораздо лучше. То, что щелочные источники отвечают требованиям жизни, показал геохимик Майк Рассел, опубликовав в 1988 году короткую статью в журнале “Нейчур”. В 90-х годах он написал ряд

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату