следует лишь, что представления Дарвина о наследственности были неполны. И это не новость. Хорошо известно, что Дарвин ничего не знал о ДНК, генах и законах Менделя, не говоря уже о переносе генов между бактериями, так что механизмы наследственности он представлял себе довольно смутно. Но ничто из этого не дискредитирует дарвиновскую теорию естественного отбора, так что заявление на обложке справедливо лишь в очень узком смысле.
Но фраза с обложки журнала поднимает очень важный вопрос. Дерево жизни подразумевает “вертикальный” способ наследования: родители путем полового размножения передают потомкам копии своих генов. Передача генов происходит в основном в рамках видов, с редкими случаями межвидового скрещивания. Репродуктивно изолированные популяции медленно дивергируют, так как возможности скрещивания между ними снижаются, и в конце концов превращаются в новые виды. Именно так на дереве жизни возникают разветвления. Но у бактерий все гораздо запутаннее. У них нет настоящего полового размножения, как у эукариот, поэтому они не образуют обособленных видов. Определение того, что такое “вид” у бактерий, всегда представляло собой проблему. Но наибольшие затруднения вызывает
Распространенность ГПГ у бактерий ставит перед нами вопрос: что мы вообще
Рис. 15. Знаменитое, но неверное трехдоменное дерево жизни.
Эту схему составил Карл Везе в 1990 году. Дерево построено на основе анализа одного высококонсервативного гена (гена рибосомальной РНК малой субъединицы рибосомы). Местоположение “корня” выявлено анализом расхождений между парами паралогичных генов, общих для всех клеток (которые дуплицировались еще у Последнего всеобщего предка), и оно показывает, что и археи, и эукариоты гораздо ближе друг к другу, чем к бактериям. Но это верно лишь для ключевых информационных генов. Большая доля остальных генов эукариот родственна генам бактерий, а не архей. Так что приведенная схема вводит нас в заблуждение. Ее можно рассматривать исключительно как филогенетическое дерево одного гена, но не как дерево жизни.
Представим теперь, что было бы, если у птиц был бы распространен ГПГ. Последовательность рРНК такого организма указывала бы на то, что перед нами птица. Но взглянув на такую “птицу”, мы увидели бы, что у нее нет крыльев, зато есть хобот, шесть лап, глаза на коленках, шерсть, а еще она мечет икру, как лягушка, и воет, как гиена. Это, конечно, абсурд, но именно с этим мы сталкиваемся, изучая бактерии. Чудовищные химеры ежесекундно пролетают у нас перед глазами, и мы не вопим от ужаса лишь потому, что те, как правило, очень малы и морфологически невзрачны. Тем не менее бактерии (если рассматривать их геномы) всегда химерны, а иные из них в генетическом отношении столь же чудовищны, как наша “птица”. У кого действительно есть причины вопить от ужаса при виде бактерий, так это у ученых-филогенетиков. На основании анализа рРНК мы не можем установить, как выглядит клетка и какой она была в прошлом.
Для чего тогда нужен филогенетический анализ по одному гену, если он ничего не может рассказать нам о происхождении клетки? В некоторых случаях он полезен – это зависит от выбранных временных масштабов и темпов ГПГ. Когда темпы горизонтального переноса низкие (у растений, животных, большинства протистов и некоторых бактерий), то на небольшом временном промежутке мы можем наблюдать устойчивую корреляцию между рибосомальным генотипом и фенотипом. Если же скорость ГПГ высока, корреляция быстро исчезает. Патогенные штаммы кишечной палочки (
Поэтому все величие древа жизни оказывается обманчивым. У нас была надежда, что удастся воссоздать истинную филогению всех клеток, установить, как одни виды возникали из других, проследить за ними до самого истока и воссоздать облик предка всего живого. Если бы мы действительно могли это сделать, мы смогли бы узнать о Последнем всеобщем предке (