этот ген распространяться и закрепляться в популяции? Если да, то мы будем наблюдать возникновение двух полов, один из которых передает митохондрии, а второй – нет. Чтобы проверить, возможно ли это, мы разработали модель, в рамках которой сравнили гипотезы коадаптации, эгоистического конфликта и простого накопления мутаций[89]. Результаты получились неожиданными и, на первый взгляд, разочаровывающими. Модель показала: ген однородительского наследования не стал бы распространяться в популяции и, уж конечно, не закрепился бы в ней.

Проблема в том, что выгода однородительского наследования зависит от числа мутантных митохондрий в популяции: чем меньше мутантов, тем меньше пользы оно приносит. Иными словами, затраты и преимущества такого наследования не фиксированы, а зависят от числа мутантных митохондрий в популяции, которое может быть снижено за несколько поколений с однородительским наследованием (рис. 29). Мы показали, что наследование этого типа действительно улучшает приспособленность популяции во всех трех моделях, но по мере того, как в популяции распространяется ген однородительского наследования, преимущества обладания этим геном падают. В конце концов он даже становится вредным: основной его недостаток в том, что клетки с этим геном могут скрещиваться с меньшей частью популяции. Популяция приходит к равновесию, когда в ней содержится всего 20 % клеток с однородительским наследованием митохондрий. При высоком уровне мутаций их доля может достигать 50 %, но особи второй половины популяции могут продолжать спариваться между собой, что дает три пола. Суть в том, что наследование митохондрий не приводит к возникновению двух полов. Однородительское наследование увеличивает разнообразие гамет, тем самым увеличивая приспособленность популяции, но этого явно недостаточно для возникновения типов спаривания.

Мне не очень-то понравилось прямое опровержение собственной идеи. В конце концов я был вынужден признать, что нет реальных условий, при которых однородительское наследование митохондрий могло бы привести к возникновению двух типов спаривания. Их появление должно быть обусловлено иными причинами[90]. Но если и так, однородительское наследование все равно существует, и если бы модель не позволяла объяснить его существование, это означало бы, что она просто неверна. Фактически удалось показать, что если по каким-либо причинам два типа спаривания уже появились, то при определенных условиях (если митохондрий много и они часто мутируют) однородительское наследование может зафиксироваться. Наше заключение казалось неопровержимым, и выводы вполне уживались с известными в природе исключениями из однородительского наследования митохондрий. К тому же оно объясняло, почему однородительское наследование митохондрий присуще почти всем многоклеточным организмам, например людям, у которых, как правило, много митохондрий и они часто мутируют.

Рис. 29. Повышающие приспособленность мутации “просачиваются” в популяцию при однородительском наследовании митохондрий.

А и а – гаметы, несущие в ядре аллели определенного гена. Гаметы а передают митохондрии потомкам, если сливаются с другой гаметой а. Гаметы А – мутанты с однородительским наследованием: если гамета А сливается с гаметой а, передаются лишь митохондрии гаметы А. На первом скрещивании изображено слияние с А и а с образованием зиготы, которая несет в ядре оба аллеля (Аа), но унаследованы лишь митохондрии гаметы А. Если а содержит дефектные митохондрии (показаны серым цветом), они будут вычищены однородительским наследованием. Затем зигота дает гаметы двух типов: А и а. Они сливаются с гаметами, содержащими дефектные митохондрии. Вверху гаметы А и а дают зиготу Аа с унаследованными от гаметы А митохондриями, не содержащую дефектных митохондрий. Внизу изображено слияние двух гамет а, и дефектные митохондрии передаются зиготе аа. Каждая зигота, Аа и аа, образует гаметы. Митохондрии гамет а теперь “очищены” двумя раундами скрещивания с однородительским наследованием. Это улучшает приспособленность гамет с двуродительским наследованием митохондрий, поэтому улучшение приспособленности, которую дает аллель А, как бы “просачивается” в популяцию и в конечном счете прекращает распространение других вариантов этого гена.

Это прекрасный пример, иллюстрирующий важность математических моделей в популяционной генетике: гипотезы должны проверяться любыми доступными методами. В нашем случае формальная модель показала, что однородительское наследование митохондрий не может фиксироваться в популяции, если прежде в ней уже не было двух типов спаривания. Мы доказали это, насколько смогли, строго. Но еще не все потеряно. Разница между типами спаривания и “истинными” полами (когда мужские и женские особи явно различаются) довольно туманна. У многих растений и водорослей есть и пол, и типы спаривания. Быть может, стоило рассматривать понятие “пол” в другом ключе и сосредоточиться на возникновении “истинных” полов, а не типов спаривания, которые внешне могут выглядеть одинаково? Возможно, наши определения того, что такое пол, были неверны и нам следовало рассматривать эволюцию истинных полов, а не двух якобы идентичных типов спаривания. Может ли однородительское наследование быть причиной различий между истинными полами у животных и растений? Если да, то типы спаривания могли возникнуть по каким-либо иным причинам, а развитие настоящих полов могло быть вызвано как раз наследованием митохондрий. Честно признаться, эта идея выглядела малообещающей, но к ней стоило присмотреться. Мы совсем не ожидали, что придем к поразительному ответу, причем именно благодаря тому, что отправились мы не от стандартной гипотезы об универсальности однородительского наследования, а от неутешительных выводов нашей предыдущей работы.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату