изолированы друг от друга, хотя их разделяет лишь несколько километров. Бертон и его коллеги отметили случаи так называемого гибридного разрушения, которое проявляется при скрещивании особей из разных популяций. Это очень любопытное явление. Гибриды первого поколения, то есть результат первого скрещивания между двумя популяциями, вполне жизнеспособны. Но если взять полученных гибридных самок и попытаться скрестить их с самцами исходной отцовской популяции, их потомки окажутся сильно ослаблены, в “плачевном” состоянии, по выражению Бертона. У потомков этого скрещивания наблюдался целый спектр изменений, и их средняя приспособленность была значительно ниже. Уровень синтеза АТФ у них сократился примерно на 40 %, и это привело к снижению выживаемости, плодовитости и сроков развития (в данном случае речь идет о сроках метаморфоза, которые зависят от размеров тела, а те, в свою очередь, от скорости роста).
Эта проблема объясняется несовместимостью митохондриальных и ядерных генов, что можно подтвердить, взяв полученных в эксперименте ослабленных самцов и скрестив их с самками из исходной материнской популяции. Потомки такого скрещивания обретают нормальную приспособленность. Но если поставить обратный эксперимент – скрестить ослабленных самок с самцами из исходной отцовской популяции, – потомство так и останется ослабленным, точнее, окажется еще слабее. Результаты этих экспериментов довольно легко понять. Митохондрии всегда наследуются от матери, и для их нормального функционирования необходимо, чтобы гены в ядре также были похожи на материнские. При скрещивании с самцами из генетически удаленной популяции материнские митохондрии начинают работать с ядерными генами, которые плохо с ними сочетаются. У гибридов первого поколения эта проблема не стоит столь остро, поскольку 50 % генов их ядра унаследованы от матери и нормально функционируют с материнскими митохондриями. У потомков от скрещивания гибридов первого поколения с самцами из исходной отцовской популяции, таким образом, 75 % ядерных генов оказывается несовместимыми с генами митохондрий, что проявляется в сильном снижении приспособленности. Скрещивание ослабленных самцов с самками из исходной материнской популяции дает потомков, у которых 62,5 % ядерных генов происходит из материнской популяции и совместимо с митохондриальными. Приспособленность потомков, таким образом, восстанавливается. Но обратное скрещивание дает противоположный эффект: 87,5 % ядерных генов у потомков оказываются неприспособленными к согласованной работе с митохондриями. Неудивительно, что такие особи на ладан дышат.
Что такое гибридное разрушение? Многие знакомы с явлением гетерозиса – увеличением приспособленности гибридов. Скрещивание неродственных линий выгодно: тогда организмы с меньшей вероятностью несут одинаковые мутации в одних и тех же генах. Наборы генов, полученные от отца и от матери, компенсируют друг друга, что повышает приспособленность. Но эффект гетерозиса встречается сравнительно редко. Гораздо чаще скрещивание между неродственными видами дает нежизнеспособное или бесплодное потомство. Это и есть гибридное разрушение. Репродуктивные барьеры между близкородственными видами далеко не такие жестки, как это преподносится в учебниках, и виды, которые в дикой природе обычно не проявляют интереса друг к другу, нередко успешно спариваются в неволе. Традиционное понимание видов как популяций, не способных при скрещивании давать способное к размножению потомство, в случае многих близкородственных организмов просто не работает. Тем не менее в процессе расхождения популяций возникают репродуктивные барьеры. Такие барьеры должны начать проявляться в скрещиваниях между популяциями особей одного вида, которые долгое время были репродуктивно изолированы друг от друга. В случае рачков, которых изучает Рон Бертон, гибридное разрушение целиком обусловлено несовместимостью митохондриальных и ядерных генов. Но, может быть, механизм гибридного разрушения распространен шире и сыграл роль в происхождении гораздо большего числа видов?
Я подозреваю, что дело обстоит именно так. Конечно, это лишь один из множества механизмов видообразования, но случаи “митонуклеарного” гибридного разрушения обнаружены у многих организмов: у мух, ос, у пшеницы, у дрожжей и даже у мышей. Этот механизм возникает из-за
Точные причины того, почему митохондриальные гены животных эволюционируют гораздо быстрее ядерных, неизвестны. Дуглас Уоллес, основоположник митохондриальной генетики, считает, что митохондрии – это авангард процесса адаптации. За счет быстрых изменений митохондриальных генов животные могут задолго до появления более медленных морфологических адаптаций приспосабливаться к изменению кормовой базы и климата. Эта идея мне нравится, хотя у нее пока слишком мало убедительных доказательств или опровержений. Но если Уоллес прав, то повышение приспособленности обусловлено непрерывным появлением новых вариантов митохондриального генома, на которые может воздействовать естественный отбор. Эти изменения не только служат начальным механизмом, облегчающим адаптацию к новым условиям, но и являются одними из предвестников видообразования. Это согласуется со старым, очень занятным биологическим правилом, которое сформулировал Дж. Б. С. Холдейн, один из отцов-основателей эволюционной биологии. Новая интерпретация этого правила предполагает, что митонуклеарная коадаптация может быть важна в процессах возникновения видов, а также играть большую роль для нашего здоровья.
Холдейн всегда питал слабость к ярким высказываниям. В 1922 году он