x1 = 123
print (x1)
if x1 % 2 == 0:
print("x1 even number")
else:
print("x1 odd number")
Подсчитаем сумму элементов массива:
values = [1,2,3,5,10,15,20]
s = 0
for p in values:
s += p
print(s)
Также для этого можно воспользоваться встроенной функцией sum:
values = [1,2,3,5,10,15,20]
print(sum(values))
Пожалуй, этого не хватит чтобы устроиться на работу программистом, но вполне достаточно для понимания примеров в книге. Теперь вернемся к Raspberry Pi.
Примечание
У языка Python есть одна неприятная особенность - по умолчанию он “не знает” русской кодировки, ее нужно принудительно указывать в начале файла:
# -*- coding: utf-8 -*-
print "Русский текст"
Без этого интерпретатор выдаст ошибку. Поэтому чтобы не загромождать код и не писать # -*- coding: utf-8 -*- каждый раз в каждом примере, в дальнейших программах все комментарии будут писаться на английском.
Знакомство с любой новой платой, мы начнем с уже традиционного - подключим светодиод. Тем более, что как можно увидеть, принципы по сути ничем не отличаются от Arduino. В этом, как и в любых следующих проектах, будем считать что Raspberry Pi включена и готова к работе, а доступ осуществляется через putty.
Наша первая схема будет совсем простой:
Принцип, как можно видеть, точно такой же - мы подключаем светодиод через токоограничительный резистор (кто забыл как это работает, может перечитать главу 1.4). Когда резистор подключен, включим Raspberry Pi и напишем код.
Если мы делаем такой проект первый раз, то сначала нужно поставить необходимые библиотеки. Введем команду sudo apt-get install python- rpi.gpio. GPIO - это general-purpose input/output, или “общие порты ввода вывода”, как раз то что нам нужно.
Запустим редактор для создания или редактирования файла, введем команду:
nano led_blink.py