10:14 до 10:16, а в промежутке от 10 до 11 часов оно, если не возникли какие-то совсем уж форс-мажорные обстоятельства, скорее всего, произойдет наверняка. Чем точнее мы определяем момент события, тем меньше вероятность того, что оно произойдет именно в этот момент, и в пределе вероятность того, что любое событие произойдет
Такое кажущееся противоречие (на которое, между прочим, обращал внимание еще великий отечественный математик Колмогоров) на практике разрешается стандартным для математики способом — мы принимаем за момент события некий малый интервал времени
Правильно сформулированный вопрос по поводу автобуса звучал бы так: каково распределение плотности вероятностей отправления автобуса во времени? Зная эту закономерность, мы можем всегда сказать, какова вероятность того, что автобус отправится в определенный промежуток времени.
Интуитивно форму кривой распределения плотности вероятностей определить несложно. Существует ли вероятность того, что конкретный автобус отправится, к примеру, позже 10:30 или, наоборот, даже раньше предыдущего автобуса? А почему нет — подобные ситуации в реальности представить себе очень легко. Однако ясно, что такая вероятность намного меньше, чем вероятность прихода «около 10:15». Чем дальше в обе стороны мы удаляемся от этого центрального наиболее вероятного срока, тем меньше плотность вероятности, пока она не станет практически равной нулю (то, что автобус задержится на сутки — событие невероятное, скорее всего, если такое случилось, вам уже будет не до автобусов). То есть распределение плотностей вероятностей должно иметь вид некоей колоколообразной кривой.
В теории вероятностей доказывается, что при некоторых предположениях относительно вероятности конкретных исходов нашего события эта кривая будет иметь совершенно определенный вид, который называется

Рис. 13.6.
Далее мы поясним смысл отдельных параметров в этой формуле, а пока ответим на вопрос: действительно ли реальные события, в частности интересующие нас ошибки измерений, всегда имеют нормальное распределение? Строгого ответа на этот вопрос в общем случае нет, и вот по какой причине. Математики имеют дело с абстракциями, считая, что мы уже имеем сколь угодно большой набор отдельных
Однако все же интуитивно понятно, что, пока автобус ходит, какое-то, пусть теоретическое, распределение имеется. Такой идеальный бесконечный набор реализаций данного события носит название
На свете сколько угодно случайных событий и процессов, имеющих распределение, совершенно отличное от нормального, однако считается (и доказывается с помощью так называемой центральной предельной теоремы), что в интересующей нас области ошибок измерений, при большом числе измерений и истинно случайном их характере, все распределения ошибок — нормальные. Предположение о большом числе измерений не слишком жесткое — реально достаточно полутора-двух десятков измерений, чтобы все теоретические соотношения с большой степенью точности соблюдались на практике. А вот про истинную случайность ошибки каждого из измерений можно говорить с изрядной долей условности — неслучайными их может сделать одно только желание экспериментатора побыстрее закончить рабочий день. Но математика тут уже бессильна.
Полученные опытным путем характеристики распределения называются оценками параметров, и, естественно, они будут соответствовать «настоящим» значениям с некоторой долей вероятности — наша задача и состоит в том, чтобы определить интервал, в котором могут находиться