отклонения оценок от «истинного» значения, и соответствующую ему вероятность. Но настало время все же пояснить — что же это за параметры?
В формуле на рис. 13.6 таких параметра два: величины
Математическое ожидание есть абсцисса максимума кривой нормального распределения (в нашем примере с автобусом — это время 10:15), а дисперсия, как видно из рис. 13.6, характеризует «размытие» кривой относительно этого максимума — чем больше дисперсия, тем положе кривая. Эти моменты имеют прозрачный физический смысл (вспомните аналогию с физическим распределением плотностей): математическое ожидание есть аналогия центра масс некоего тела, а дисперсия характеризует распределение масс относительно этого центра (хотя распределение плотности материи в физическом теле далеко от нормального распределения плотности вероятности).
Оценкой

(2)
Здесь
Оценка

(3)
Оценка среднего квадратического отклонения, соответственно, будет:

(4)
Здесь (
Следует особо обратить внимание, что сумму квадратов отклонений делить нужно именно на
* * *
Заметки на полях
Кроме математического ожидания, средние значения распределения вероятностей характеризуют еще величинами, называемыми модой и медианой. В случае нормального распределения все три величины совпадают, но в других случаях они могут оказаться полезными: мода есть абсцисса наивероятнейшего значения (т. е. максимума на кривой распределения, что полностью отвечает бытовому понятию о моде), а медиана выборки есть такая точка, что половина выборки лежит левее ее, а вторая половина — правее.
* * *
Этими формулами для расчета случайных погрешностей можно было бы ограничиться, если бы не один важный вопрос: оценки-то мы получили, а вот в какой степени они отвечают действительности? Правильно сформулированный вопрос будет звучать так: какова вероятность того, что среднее арифметическое отклоняется от «истинного» значения (т. е. математического ожидания) не более чем на некоторою величину
Величина