{

digitalWrite(13, HIGH); // включаем светодиод

delay(1000); // ждем 1000 миллисекунд

digitalWrite(13, LOW); // выключаем светодиод

delay(1000); // ждем 1000 миллисекунд

}

Если с первого раза получаете «отлуп» (в виде того самого красного сообщения avrdude: stk500_getsync(): not in sync: resp =0x1c), то проделайте следующее: запустите Диспетчер задач и найдите там устройство Arduino USB Serial Light Adapter. Затем выдерните USB-кабель из адаптера и сразу включите вновь (в Диспетчере задач устройство исчезнет и опять появится). Теперь ему следует сделать дополнительный программный сброс — в контекстном меню Arduino USB Serial Light Adapter разыщите пункт Отключить. Отключите устройство и сразу же включите опять (напомню, что в Windows 7 и 8 пункт меню будет называться Задействовать). Если после этих манипуляций связь с платой все равно не заработает, как надо, то перезагрузите компьютер — должно помочь.

Схема выносного датчика

Схема выносного датчика показана на рис. 22.4. Его мы будем вводить в режим энергосбережения, потому придется принять ряд схемотехнических мер.

Рис. 22.4. Схема выносного датчика метеостанции

Подключение Xbee-модуля к Arduino Mini отличается от стандартного наличием линии Sleep (контакт 9 платы Xbee-модуля). По этой линии мы будем загонять модуль в режим низкого потребления в паузах между измерениями. Обратите внимание, что выходы Arduino подключены к модулю через согласующие делители R1/R2 и R3/R4 с довольно большим сопротивлением, — без согласования, как мы говорили, ток через эти выводы резко возрастет. В этих же целях придется выпаять из платы Arduino Mini желтый неуправляемый светодиод, который сигнализирует о подаче питания (его не было в ранних релизах Arduino Mini). Этот светодиод мы заменим на красный, подключенный к стандартному 13-му выводу платы и заставим его кратковременно включаться в момент считывания показаний и передачи их в станцию (напомним, что к 13-му выводу на плате уже подключен балластный резистор 1 кОм).

Хитрое включение батарейного питания ориентировано на достижение энергосбережения в максимальной степени. От трех элементов АА (реальное напряжение около 4,5–4,8 В) питается плата Arduino, а от отвода между вторым и третьим — модуль ХЬее (напряжение 3,0–3,2 В). Диод D1 типа КД922 (с переходом Шоттки, т. е. с малым падением напряжения) развязывает источники питания 5 и 3,3 В, чтобы они по каким-то причинам не начали работать друг на друга. Если бы мы подключили обычное питание 7–9 В к стабилизатору платы, а модуль ХЬее через какой-нибудь из стандартных «шилдов» со встроенным стабилизатором 3,3 В, то теряли бы питание не только на самих стабилизаторах, но и за счет их собственного потребления.

* * *

Подробности

Правда, в Arduino Mini установлен малопотребляющий стабилизатор LP2985AIM5-5.0 (в этом отличие Mini от Uno, где стоит стабилизатор NCP1117ST50T3G — более мощный, но совсем не экономичный). Однако его, во-первых, может не хватить для питания Xbee-модуля в случае, если мы выберем Pro-версию (согласно документации фирмы Digi, модуль ХЬее Pro может потреблять в момент передачи почти 300 мА, а LP2985 допускает только 150). Во-вторых, для получения 3,3 В все равно нужен дополнительный стабилизатор, а в нашем Wireless Shield установлен СХ1117-3.3 — тоже не самый экономичный.

* * *

В результате при батарейном питании проще вообще обойтись без нагромождения стабилизаторов — до напряжения 1,1 В на каждый элемент схема должна работать надежно, а это практически 80 % емкости щелочных батарей (см. рис. 9.2). И раз уж мы применяем Arduino, который позволяет многое без особого напряжения сил, то для удобства станем измерять напряжение батареи датчика, передавать его в главный модуль вместе с данными и заставлять

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату