температуры и может возрасти на несколько порядков (от нано- до микроампер) при повышении температуры от -50 °C до +50 °C, поэтому на графике его величина показана очень приблизительно (обратите внимание, что для наглядности верхняя и нижняя половины графика по оси токов построены в разных масштабах).
В отличие от обратного тока, прямое падение напряжения Uпp гораздо меньше зависит как от типа и конструкции, так и от температуры. Для кремниевых диодов прямое падение напряжения Uд всегда можно считать равным примерно 0,6–0,7 В, для германиевых и так называемых диодов Шоттки (маломощных диодов с переходом металл- полупроводник) — порядка 0,2–0,4 В. Для кремниевых диодов при увеличении температуры Uпр падает примерно на 2,3 мВ на один градус, и этот эффект нередко используют для измерения температуры. В германиевых диодах, кстати, этот эффект в разы больше (порядка 10 мВ на градус).
Если умножить указанное прямое падение напряжения на проходящий через диод в прямом включении ток, то мы получим тепловую мощность, которая выделяется на диоде. Именно она приводит диоды к выходу из строя — при превышении допустимого тока они просто сгорают. Обычное предельно допустимое среднее значение тока через маломощные диоды — десятки и сотни миллиампер. Впрочем, тепловые процессы инерционны, и мгновенное значение тока, в зависимости от длительности импульса, может превышать предельно допустимое среднее значение в сотни раз! Мощные диоды (рассчитанные на токи 3–5 А и выше) часто приходится устанавливать на радиаторы.
Другая характеристика диодов — предельно допустимое обратное напряжение. Если оно превышено, то диоды также выходят из строя — электрически пробиваются и замыкаются накоротко. Обычная допустимая величина обратного напряжения для маломощных диодов — десятки вольт, для выпрямительных диодов — сотни вольт, но есть диоды, которые выдерживают и десятки тысяч вольт (обычно они составляются из нескольких последовательно включенных диодов с меньшим допустимым значением). Интересно, что кремниевые диоды при кратковременном превышении максимального обратного напряжения пробиваются обратимо — если ток невелик и допустимая мощность не превышена, то после спада напряжения диод восстанавливает свои свойства. Далее мы увидим, что существуют и диоды, для которых пробой в обратном включении является рабочим режимом — они называются стабилитронами.
Физически диод состоит из небольшого кристаллика полупроводникового материала, в котором в процессе производства формируются две зоны с разными проводимостями, называемыми проводимостью n- и p-типа. Ток всегда течет от направления p-зоны по направлению к n-зоне, в обратном направлении диод заперт. Более подробные сведения о физике процессов, происходящих в p-n-переходе, излагаются во множестве пособий, включая школьные учебники, но для практической деятельности почти не требуются.
Транзисторы Транзистор — это электронный полупроводниковый прибор, предназначенный для усиления сигналов. Первым таким прибором в истории была электронная лампа (а еще до нее — электромагнитные реле, которые с некоторыми оговорками тоже можно отнести к усилителям тока или напряжения, — их мы рассмотрим в главе 7).
Лампа сумела сделать немало — именно в ламповую эпоху возникли радио и телевидение, компьютеры и домашняя звукозапись. Но только транзистор и возникшие на его основе микросхемы сумели действительно перевернуть мир, ввести электронные устройства в наш повседневный быт так, что мы теперь уже и не мыслим себя без них.
Транзисторы делятся на биполярные и полевые (или униполярные). Пока мы будем говорить только о биполярных транзисторах.
Физически биполярный транзистор состоит из трех слоев полупроводника, разделенных двумя p-n-переходами. Поэтому можно себе представить, что он состоит как бы из двух диодов, один из слоев у которых общий, и это представление весьма близко к действительности! Скомбинировать два диода можно, сложив их либо анодами, либо катодами, соответственно, различают n-р-n- и p-n- р-транзисторы.
Различаются эти разновидности только полярностями соответствующих напряжений, поэтому, чтобы заменить n-р-n- на аналогичный p-n-р-транзистор, надо просто поменять знаки напряжений во всей схеме на противоположные (все полярные компоненты, — диоды, электролиты — естественно, тоже надо перевернуть).
N-p-n-типов транзисторов выпускается гораздо больше, и употребляются они чаще, поэтому мы пока что будем вести речь исключительно о них, но помнить, что все сказанное справедливо и для p-n-р, с учетом обратной их полярности. Правильные полярности и направления токов для n-р-n-транзистора показаны на рис. 6.2.