Дифференциальный каскад, как он показан на рис. 6.9, предполагает два раздельных одинаковых питания (плюс и минус) относительно «земли», но для самого каскада это не более, чем условность, — питание всего каскада можно рассматривать, как однополярное (и равное в данном случае 10 + 10 = 20 В), просто входной сигнал должен находиться где-то посередине между питаниями. Ради удобства проектирования схем источник входного напряжения всегда привязывают к «земле», потенциал которой находится посередине между потенциалами источников питания самого каскада, т. е. общее питание рассматривают, как разделенное на два: положительное и отрицательное. Относительно этой же «земли» мы будем также отсчитывать выходные напряжения Uвых1 и Uвых2.

С учетом того, что база и эмиттер транзистора всегда привязаны друг к другу, в этой схеме обе базы в рабочем режиме всегда будут иметь одинаковый потенциал. Поэтому, если на них подавать один и тот же сигнал (базовые резисторы на рис. 6.9 не показаны), то ничего происходить не будет — току течь некуда, т. к. все под одним и тем же напряжением. Вся конструкция из двух транзисторов будет смещаться относительно «земли» в соответствии с поданным сигналом, а на выходах ничего и не шелохнется — это легко проверить. Такой сигнал называют синфазным.

Иное дело, если сигналы на входах различаются — их разность будет усиливаться. Такой сигнал называют дифференциальным. Это основное свойство дифференциального усилителя, которое позволяет выделять небольшой сигнал на фоне довольно большой помехи. Помеха одинаково — синфазно — действует на оба входа, а полезный сигнал усиливается.

Мы не будем здесь подробно разбирать работу этой схемы (рекомендую [4, 5]), только укажем некоторые ее особенности:

□ входное сопротивление дифференциального каскада равно входному сопротивлению каскада с общим коллектором;

□ усиление по напряжению (дифференциальному) составляет 100 и более раз.

Если вы хотите получить точно определенный коэффициент усиления, в каждый из эмиттеров нужно ввести по одинаковому резистору — тогда Кус будет определяться, как для каскада на рис. 6.7. Но обычно в таком режиме дифференциальный усилитель не применяют — их используют в системах с общей обратной связью, которая и задает необходимый коэффициент усиления (см. главу 8);

□ выходы строго симметричны;

□ резистор Rк1, если не используется Uвых1, вообще можно исключить (или наоборот) — смотря, какой выход (прямой или инверсный) использовать.

Полевые транзисторы

Типы полевых транзисторов гораздо более разнообразны, чем биполярных (к полевым, кстати, и принадлежал самый первый прототип транзистора, изобретенный Шокли еще в 1946 году). Только основных разновидностей существует более десятка, но всем им присущи общие черты, которые мы сейчас кратко и рассмотрим.

Простейший полевой транзистор с p-n-переходом показан на рис. 6.10, а — в данном случае с «- каналом. Аналогичные базе, коллектору и эмиттеру выводы называются здесь затвор, сток и исток. Если потенциал затвора равен потенциалу истока (т. е. имеется в виду аналог замыкания цепи база-эмиттер у биполярного), то, в отличие от биполярного, полевой транзистор с p-n-переходом открыт. Но есть и еще одно существенное отличие — если биполярный транзистор при полном открывании имеет почти нулевое сопротивление цепи коллектор-эмиттер, то полевой в этих условиях работает довольно стабильным источником тока — ток в цепи истока почти не зависит от напряжения на стоке. Сама величина тока зависит от конкретного экземпляра транзистора и называется начальным током стока. Запереть его удается подачей отрицательного (порядка 7-10 В) напряжения на затвор относительно истока, а в промежутке полевик с n-каналом находится в активном режиме, когда ток стока зависит от напряжения на затворе.

Уникальной особенностью полевого транзистора является то, что в рабочем режиме он фактически не потребляет тока по входу затвора — достаточно иметь соответствующий потенциал, ведь диод затвор-исток в рабочем режиме смещен в обратном направлении, и ток через него определяется только токами утечки, которые равны нано- и микроамперам, как говорилось ранее! В этом отношении полевой транзистор аналогичен электронной лампе. А если мы сместим этот переход в положительном направлении (когда потенциал затвора превысит потенциал истока, и диод затвор-исток откроется), то полевой транзистор с p-n-переходом уже перестанет работать как транзистор.

Рис. 6.10. Полевые транзисторы:

а — включение полевого транзистора с p-n-переходом и n-каналом; б — полевой транзистор с изолированным затвором (MOSFET) в режиме ключа; в — внутренняя структура IGВТ-транзистора 

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ОБРАНЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату