В различных типах полевых транзисторов с изолированным затвором (так называемых МОП-транзисторах, от «металл- окисел-полупроводник» или, по-английски, MOS, иначе их называют MOSFET), последний вообще изолирован от цепи сток-исток тонким слоем окисла кремния SiO2, и там в принципе нет и не может быть никакого тока через цепь затвора. Правда, когда на затвор подается переменное напряжение или короткий импульс, в дело вступает конденсатор, образованный затвором и истоком. Как следует из главы 5, перезаряд этого конденсатора (его емкость может составлять десятки пикофарад) может приводить к значительному реактивному току в цепи затвора. На подобных транзисторах построены практически все современные логические микросхемы, отличающиеся практически нулевым потреблением тока в статическом режиме (см. главу 15).

Старые образцы MOSFET-транзисторов с «-каналом (например, отечественные КПЗ05, КПЗ13) требовали для полного запирания небольшого отрицательного смещения на затворе относительно истока (порядка 0,5–0,8 В). Современные MOSFET-транзисторы (рис. 6.10, б) управляются аналогично биполярному в схеме с общим эмиттером — при нулевом напряжении на затворе относительно истока транзистор заперт, при положительном напряжении порядка 8-20 В — полностью открыт, причем в открытом состоянии он представляет собой крайне малое сопротивление — у некоторых типов менее 0,01 Ом. Такие транзисторы выпускаются на мощности от единиц до сотен ватт и используются, например, для управления шаговыми двигателями или в импульсных источниках питания.

Вообще полевики гораздо ближе к той модели транзистора, когда промежуток коллектор-эмиттер или сток-исток представляются как управляемое сопротивление — у полевых транзисторов это действительно сопротивление. Условно говоря, со схемотехнической точки зрения биполярные транзисторы являются приборами для усиления тока, а полевые — для усиления напряжения.

Приведенные нами примеры не исчерпывают разнообразия типов полевых транзисторов. Например, так называемые IGBT-транзисторы (Insulated Gate Bipolar Transistors, биполярный транзистор с изолированным затвором), появившиеся в 1980-е годы, объединяют в себе полевую и биполярную структуры, отчего управляющий электрод в них зовется, как и в полевых, затвором, а два других аналогично биполярным: коллектором и эмиттером. На самом деле IGBT-транзистор представляет собой довольно сложную полупроводниковую структуру (рис. 6.10, в), с положительной обратной связью между разнополярными «обычными» транзисторами и с управлением от полевого (ср. со структурой однопереходного транзистора на рис. 10.3).

IGBT-транзисторы используются в качестве мощных ключей: десятки-сотни ампер при напряжениях более 1000 вольт. Управляются они положительным напряжением на затворе относительно эмиттера, причем у некоторых типов насыщение наступает уже при подаче 2,7–4 В на затвор, и такие транзисторы могут управляться непосредственно от логических схем. Платой за такую роскошь является довольно высокое напряжение насыщения между коллектором и эмиттером, характерное для биполярных транзисторов: от 1 В для относительно маломощных приборов (единицы ампер) до 2–3 В для более мощных (десятки и сотни ампер).

Выбор транзисторов

В заключение главы приведем критерии подбора биполярных и полевых транзисторов для конкретной схемы. Сейчас мы оставляем за скобками частотные характеристики транзисторов — будем считать, что достаточно выбрать прибор с рабочей частотой, примерно в 10 раз превышающей самые высокие частоты в схеме.

* * *

Особенности ключевого режима на высокой частоте

В силу того, что у прямоугольного импульса, как сказано в главе 5, верхняя частота неограниченна, может создаться искушение выбирать как можно более высокочастотные приборы. Но это не вполне разумно — достаточно выбрать компоненты с рабочей частотой примерно в 10–20 раз выше, чем основная частота прямоугольных сигналов.

Быстродействие ключевых схем с общим эмиттером все равно будет существенно ниже ожидаемого, причем повышение частотных свойств транзистора не сильно поможет, и вот почему.

Если ток базы увеличить скачком, то нарастание тока коллектора будет происходить не сразу, а по кривой, аналогичной показанной на рис. 6.1 (если бы по оси абсцисс откладывалось не напряжение, а время). Иными словами, вывод биполярного транзистора из состояния насыщения занимает определенное время, а форма прямоугольных импульсов на коллекторной нагрузке весьма сильно искажается. Это не будет иметь существенного значения для низкочастотных схем, рассматриваемых в этой книге, но может доставить много неприятностей, если вы попробуете, например, с помощью простого ключевого каскада управлять передачей импульсов в скоростных линиях связи. В свое время преодоление этого эффекта доставило немало хлопот конструкторам транзисторных логических схем. Для того чтобы обойти эту неприятность, существует несколько способов держать запертый транзистор на грани насыщения, но мы их в этой книге рассматривать не будем — ныне для упомянутых целей существуют готовые решения в интегральном

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату